Skip to content

Releases: DataCanvasIO/HyperGBM

Upgrade to 0.2.5

01 Mar 05:52

Choose a tag to compare

This version brings the following new features:

  • Full pipeline GPU acceleration
    • Data adaption
    • Data cleaning
    • Feature selection
    • Data drift detection
    • Feature selection(2nd stage)
    • Pseudo labeling(2nd stage)
    • Optimization
      • Data preprocessing
      • Model fitting
    • Model ensemble
    • Metrics
  • Model training
    • Add TargetEncoder for categories
    • Set estimator eval_metric based on experiment reward_metric
  • Advanced Features
    • Data adaption in experiment
  • Experiment Visualization
    • Experiment configurations
    • Dataset information
    • Processing information
  • Multijob management
    • Series and parallel jobs scheduling
    • Local and remote jobs execution
  • Export experiment report

0.2.3.2

16 Dec 12:51

Choose a tag to compare

Upgrade requirements

0.2.3.1

19 Oct 06:50

Choose a tag to compare

Fix dependencies version conflicts

Upgrade to 0.2.3

20 Aug 06:56

Choose a tag to compare

Update documents

0.2.2

04 Mar 09:35

Choose a tag to compare

Upgrade to 0.2.2

0.2.1

04 Feb 06:12

Choose a tag to compare

This release add following new features:

Feature engineering

  • Feature generation
  • Feature selection

Data clean

  • Special empty value handing
  • Correct data type
  • Id-ness features cleanup
  • Duplicate features cleanup
  • Empty label rows cleanup
  • Illegal values replacement
  • Constant features cleanup
  • Collinearity features cleanup

Data set split

  • Adversarial validation

Modeling algorithms

  • XGBoost
  • Catboost
  • LightGBM
  • HistGridientBoosting

Training

  • Task inference
  • Command-line tools

Evaluation strategies:

  • Cross-validation
  • Train-Validation-Holdout

Search strategies

  • Monte Carlo Tree Search
  • Evolution
  • Random search

Imbalance data

  • Class Weight
  • Under-Samping
    • Near miss
    • Tomeks links
    • Random
  • Over-Samping
    • SMOTE
    • ADASYN
    • Random

Early stopping strategies

  • max_no_improvement_trials
  • time_limit
  • expected_reward

Advance features:

  • Two stage search
    • Pseudo label
    • Feature selection
  • Concept drift handling
  • Ensemble

0.1.2

30 Nov 07:33

Choose a tag to compare

0.1.2 Pre-release
Pre-release
Update setup.py