You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
""":py:class:`~CompStats.interface.Perf` with :py:func:`~sklearn.metrics.f1_score` (as :py:attr:`score_func`) with the parameteres needed to compute the macro score. The parameters not described can be found in :py:func:`~sklearn.metrics.macro_f1`
311
+
312
+
:param y_true: True measurement or could be a pandas.DataFrame where column label 'y' corresponds to the true measurement.
313
+
:type y_true: numpy.ndarray or pandas.DataFrame
314
+
:param y_pred: Predictions, the algorithms will be identified with alg-k where k=1 is the first argument included in :py:attr:`y_pred.`
315
+
:type y_pred: numpy.ndarray
316
+
:param kwargs: Predictions, the algorithms will be identified using the keyword
317
+
:type kwargs: numpy.ndarray
318
+
:param num_samples: Number of bootstrap samples, default=500.
319
+
:type num_samples: int
320
+
:param n_jobs: Number of jobs to compute the statistic, default=-1 corresponding to use all threads.
321
+
:type n_jobs: int
322
+
:param use_tqdm: Whether to use tqdm.tqdm to visualize the progress, default=True
""":py:class:`~CompStats.interface.Perf` with :py:func:`~sklearn.metrics.recall_score` (as :py:attr:`score_func`) with the parameteres needed to compute the macro score. The parameters not described can be found in :py:func:`~sklearn.metrics.macro_recall`
336
+
337
+
:param y_true: True measurement or could be a pandas.DataFrame where column label 'y' corresponds to the true measurement.
338
+
:type y_true: numpy.ndarray or pandas.DataFrame
339
+
:param y_pred: Predictions, the algorithms will be identified with alg-k where k=1 is the first argument included in :py:attr:`y_pred.`
340
+
:type y_pred: numpy.ndarray
341
+
:param kwargs: Predictions, the algorithms will be identified using the keyword
342
+
:type kwargs: numpy.ndarray
343
+
:param num_samples: Number of bootstrap samples, default=500.
344
+
:type num_samples: int
345
+
:param n_jobs: Number of jobs to compute the statistic, default=-1 corresponding to use all threads.
346
+
:type n_jobs: int
347
+
:param use_tqdm: Whether to use tqdm.tqdm to visualize the progress, default=True
""":py:class:`~CompStats.interface.Perf` with :py:func:`~sklearn.metrics.precision_score` (as :py:attr:`score_func`) with the parameteres needed to compute the macro score. The parameters not described can be found in :py:func:`~sklearn.metrics.macro_precision`
361
+
362
+
:param y_true: True measurement or could be a pandas.DataFrame where column label 'y' corresponds to the true measurement.
363
+
:type y_true: numpy.ndarray or pandas.DataFrame
364
+
:param y_pred: Predictions, the algorithms will be identified with alg-k where k=1 is the first argument included in :py:attr:`y_pred.`
365
+
:type y_pred: numpy.ndarray
366
+
:param kwargs: Predictions, the algorithms will be identified using the keyword
367
+
:type kwargs: numpy.ndarray
368
+
:param num_samples: Number of bootstrap samples, default=500.
369
+
:type num_samples: int
370
+
:param n_jobs: Number of jobs to compute the statistic, default=-1 corresponding to use all threads.
371
+
:type n_jobs: int
372
+
:param use_tqdm: Whether to use tqdm.tqdm to visualize the progress, default=True
0 commit comments