|
| 1 | +import os |
| 2 | +from typing import cast |
| 3 | +import torch |
| 4 | +from torch import nn |
| 5 | +from torch.distributed.tensor import DTensor |
| 6 | +from transformers import AutoTokenizer |
| 7 | + |
| 8 | +from xtuner._testing import DeterministicDDPTestCase |
| 9 | +from xtuner.v1.config import FSDPConfig |
| 10 | +from xtuner.v1.model.base import ModelItem |
| 11 | +from xtuner.v1.model.moe.moe import SequenceContext |
| 12 | +from xtuner.v1.model.moe.qwen3 import Qwen3MoEConfig |
| 13 | +from xtuner.v1.module.attention import MHAConfig |
| 14 | +from xtuner.v1.module.router.greedy import GreedyRouterConfig |
| 15 | +from xtuner.v1.module import RMSNorm |
| 16 | +from xtuner.v1.module.decoder_layer.moe_decoder_layer import MoEGate |
| 17 | +from xtuner.v1.module.grouped_linear.moe_group_linear import GroupedLinear |
| 18 | +from xtuner.v1.float8.float8_gmm_tile_wise import TileWiseFloat8GroupedLinear |
| 19 | +from xtuner.v1.utils import internal_metrics |
| 20 | +from xtuner.v1.utils.internal_metrics import InternalMetricsConfig, InternalMetricsRecorder |
| 21 | +from xtuner.v1.utils.device import get_device |
| 22 | + |
| 23 | + |
| 24 | +DEVICE = get_device() |
| 25 | +QWEN3_MOE_PATH = os.environ["QWEN3_MOE_PATH"] |
| 26 | + |
| 27 | +def _get_model_config() -> Qwen3MoEConfig: |
| 28 | + return Qwen3MoEConfig( |
| 29 | + vocab_size=151936, |
| 30 | + max_position_embeddings=4096, |
| 31 | + pad_token_id=0, |
| 32 | + bos_token_id=151643, |
| 33 | + eos_token_id=151645, |
| 34 | + num_hidden_layers=1, |
| 35 | + hidden_size=2048, |
| 36 | + intermediate_size=6144, |
| 37 | + rms_norm_eps=1e-6, |
| 38 | + rope_theta=1000000.0, |
| 39 | + hidden_act="silu", |
| 40 | + attention=MHAConfig( |
| 41 | + num_attention_heads=16, |
| 42 | + num_key_value_heads=4, |
| 43 | + head_dim=128, |
| 44 | + ), |
| 45 | + tie_word_embeddings=False, |
| 46 | + n_routed_experts=16, |
| 47 | + n_shared_experts=0, |
| 48 | + num_experts_per_tok=1, |
| 49 | + first_k_dense_replace=0, |
| 50 | + hidden_factor=1.0, |
| 51 | + moe_intermediate_size=768, |
| 52 | + router=GreedyRouterConfig( |
| 53 | + scoring_func="softmax", |
| 54 | + norm_topk_prob=True, |
| 55 | + router_scaling_factor=1.0, |
| 56 | + ), |
| 57 | + ) |
| 58 | + |
| 59 | + |
| 60 | +class TestInternalMetricsRecorder(DeterministicDDPTestCase): |
| 61 | + def test_internal_metrics_run(self): |
| 62 | + self.create_pg("cuda") |
| 63 | + |
| 64 | + config = _get_model_config() |
| 65 | + with torch.device("meta"): |
| 66 | + model = config.build() |
| 67 | + |
| 68 | + fsdp_config = FSDPConfig() |
| 69 | + model.fully_shard(fsdp_config=fsdp_config) |
| 70 | + model.init_weights() |
| 71 | + |
| 72 | + internal_metrics_interval = 1 |
| 73 | + |
| 74 | + internal_metrics_cfg = InternalMetricsConfig( |
| 75 | + internal_metrics_interval=internal_metrics_interval, |
| 76 | + monitor_weights_rms_norm=True, |
| 77 | + monitor_attn_logits_stats=True, |
| 78 | + monitor_moe_router_logits_stats=True, |
| 79 | + monitor_moe_load_balance_stats=True, |
| 80 | + ) |
| 81 | + |
| 82 | + metrics_recorder = InternalMetricsRecorder(internal_metrics_cfg, model) |
| 83 | + |
| 84 | + hf_model_path = QWEN3_MOE_PATH |
| 85 | + tokenizer = AutoTokenizer.from_pretrained(hf_model_path) |
| 86 | + |
| 87 | + text_list = [ |
| 88 | + "一个好的研究者应自己先审视自己的 claim, 并真心地尝试用实验检验它们", |
| 89 | + ] |
| 90 | + |
| 91 | + data_batches = [] |
| 92 | + |
| 93 | + for text in text_list: |
| 94 | + input_ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda") |
| 95 | + seq_ctx = SequenceContext.from_input_ids(input_ids=(input_ids,)) |
| 96 | + data_batches.append(ModelItem(seq_ctx=seq_ctx, loss_ctx=None)) # type: ignore[arg-type] |
| 97 | + |
| 98 | + metrics = metrics_recorder.pop_metrics(data_batches) |
| 99 | + |
| 100 | + # Check that all expected top-level keys exist |
| 101 | + assert "weight_rms" in metrics |
| 102 | + assert "router_logits_max" in metrics |
| 103 | + assert "router_logits_mean" in metrics |
| 104 | + assert "maxvio" in metrics |
| 105 | + assert "drop_ratio" in metrics |
| 106 | + |
| 107 | + if DEVICE != "npu": |
| 108 | + assert "attn_max_lse" in metrics or "attn_max_logits" in metrics |
| 109 | + |
| 110 | + # Check that all values are valid floats (not NaN or Inf) |
| 111 | + for metric_name, metric_dict in metrics.items(): |
| 112 | + assert isinstance(metric_dict, dict), f"{metric_name} should be a dict" |
| 113 | + for key, value in metric_dict.items(): |
| 114 | + assert isinstance(value, float), f"{metric_name}[{key}] should be float" |
| 115 | + assert not torch.isnan(torch.tensor(value)), f"{metric_name}[{key}] is NaN" |
| 116 | + assert not torch.isinf(torch.tensor(value)), f"{metric_name}[{key}] is Inf" |
| 117 | + |
| 118 | + for key in ["embed_tokens", "lm_head"] + [f"layers.{i}" for i in range(model.config.num_hidden_layers)]: |
| 119 | + assert key in metrics["weight_rms"], f"key: {key}, weight_rms: {metrics['weight_rms']}" |
| 120 | + |
| 121 | + for key in [f"layer{i}" for i in range(model.config.num_hidden_layers)]: |
| 122 | + assert key in metrics["maxvio"], f"key: {key}, maxvio: {metrics['maxvio']}" |
| 123 | + assert key in metrics["drop_ratio"], f"key: {key}, drop_ratio: {metrics['drop_ratio']}" |
| 124 | + assert key in metrics["router_logits_max"], f"key: {key}, router_logits_max: {metrics['router_logits_max']}" |
| 125 | + assert key in metrics["router_logits_mean"], f"key: {key}, router_logits_mean: {metrics['router_logits_mean']}" |
| 126 | + |
| 127 | + if DEVICE != "npu": |
| 128 | + for layer in range(model.config.num_hidden_layers): |
| 129 | + assert ( |
| 130 | + f"layers.{layer}.self_attn" in metrics["attn_max_lse"] or # type: ignore[attr-defined] |
| 131 | + f"layers.{layer}.self_attn" in metrics["attn_max_logits"] # type: ignore[attr-defined] |
| 132 | + ) |
| 133 | + |
| 134 | + assert "total" in metrics["maxvio"] |
| 135 | + assert "total" in metrics["drop_ratio"] |
0 commit comments