@@ -49,25 +49,3 @@ import FastTransforms: chebyshevmoments1, chebyshevabsmoments1, bivariatemoments
4949 μ = BlockedVector(PaddedVector(inv.(1 : 21 ), (2 n- 1 )* (2 n)÷ 2 ), 1 : 2 n- 1 )
5050 W = BivariateGramMatrix(μ, X, Y) # works with Chebyshev X & Y, but blocks are not extracted as banded matrices
5151end
52-
53-
54- using ClassicalOrthogonalPolynomials, MultivariateOrthogonalPolynomials, FastTransforms, LinearAlgebra, Plots
55-
56- using LazyArrays, BlockArrays, BlockBandedMatrices
57-
58- n = 50
59-
60- μ = BlockedVector(PaddedVector([10 ; zeros(20 )] + inv.(1 : 21 ), (2 n- 1 )* (2 n)÷ 2 ), 1 : 2 n- 1 )
61- # W = BivariateGramMatrix(μ, X, Y) # works with Chebyshev X & Y, but blocks are not extracted as banded matrices
62-
63- P = JacobiTriangle(0 , 0 , 0 )
64- # P = RectPolynomial(Legendre(), Legendre())
65- X = jacobimatrix(Val(1 ), P)
66- Y = jacobimatrix(Val(2 ), P)
67- x, y = coordinates(P);
68-
69- X = BandedBlockBandedMatrix(X[Block.(1 : 2 n- 1 ), Block.(1 : 2 n- 1 )])
70- Y = BandedBlockBandedMatrix(Y[Block.(1 : 2 n- 1 ), Block.(1 : 2 n- 1 )])
71- # Y = FastTransforms._chebyshev_y(Float64, 2n-1)
72- W = BivariateGramMatrix(μ, X, Y) # works with Chebyshev X & Y, but blocks are not extracted as banded matrices
73- eigvals(W)
0 commit comments