@@ -19,9 +19,10 @@ function LinearAlgebra.ldiv!(H::HessenbergMatrix, B::AbstractVecOrMat)
1919 lmul!(G, view(Hd, 1 : n, i: n))
2020 lmul!(G, B)
2121 end
22- ldiv!(UpperTriangular(Hd), B)
22+ LinearAlgebra . ldiv!(UpperTriangular(Hd), B)
2323end
24- (\ )(H:: HessenbergMatrix , B:: AbstractVecOrMat ) = ldiv!(copy(H), copy(B))
24+ LinearAlgebra.:\ (H:: HessenbergMatrix , B:: AbstractVecOrMat ) =
25+ LinearAlgebra. ldiv!(copy(H), copy(B))
2526
2627# Hessenberg factorization
2728struct HessenbergFactorization{T,S<: StridedMatrix ,U} <: Factorization{T}
3233Base. copy(HF:: HessenbergFactorization{T,S,U} ) where {T,S,U} =
3334 HessenbergFactorization{T,S,U}(copy(HF. data), copy(HF. τ))
3435
35- function _hessenberg !(A:: StridedMatrix{T} ) where {T}
36+ function hessenberg !(A:: StridedMatrix{T} ) where {T}
3637 n = LinearAlgebra. checksquare(A)
3738 τ = Vector{Householder{T}}(undef, n - 1 )
3839 for i = 1 : (n- 1 )
@@ -45,7 +46,6 @@ function _hessenberg!(A::StridedMatrix{T}) where {T}
4546 end
4647 return HessenbergFactorization{T,typeof(A),eltype(τ)}(A, τ)
4748end
48- hessenberg!(A::StridedMatrix) = _hessenberg!(A)
4949
5050Base.size(H::HessenbergFactorization, args...) = size(H.data, args...)
5151
@@ -57,6 +57,8 @@ function Base.getproperty(F::HessenbergFactorization, s::Symbol)
5757 end
5858end
5959
60+ Base.propertynames(F::HessenbergFactorization) = (fieldnames(typeof(F))..., :H)
61+
6062# Schur
6163struct Schur{T,S<:StridedMatrix} <: Factorization{T}
6264 data::S
0 commit comments