|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import sys\n", |
| 10 | + "sys.path.insert(0, '../')\n", |
| 11 | + "\n", |
| 12 | + "print(sys.path)" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "import obsidian\n", |
| 22 | + "print(f'obsidian version: ' + obsidian.__version__)\n", |
| 23 | + "\n", |
| 24 | + "from obsidian.experiment import AdvExpDesigner" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": null, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "# Define continuous parameters: key -> (low, high, step)\n", |
| 34 | + "\n", |
| 35 | + "continuous_params = {\n", |
| 36 | + " 'temperature': (20, 80, 5), # Linear steps of 5 between 20 and 80\n", |
| 37 | + " 'concentration': (0.1, 1.0, 0.1), # Linear steps of 0.1 between 0.1 and 1.0\n", |
| 38 | + " 'pressure': (1, 16, 'geometric'), # Geometric steps doubling from 1 to 16 (1, 2, 4, 8, 16)\n", |
| 39 | + " 'time': (10, 1000, 'logarithmic') # Logarithmic steps (powers of 10) between 10 and 1000\n", |
| 40 | + "}\n", |
| 41 | + "\n", |
| 42 | + "# Define conditional categorical parameters with subparameters and frequencies: key -> {subkey: {'freq': frequency, 'subparams': ([values], [frequencies])}}\n", |
| 43 | + "\n", |
| 44 | + "conditional_subparameters = {\n", |
| 45 | + " 'buffer_type': {\n", |
| 46 | + " 'A': {'freq': 0.4, 'pH': ([6.0, 7.0, 8.0], [0.3, 0.4, 0.3])},\n", |
| 47 | + " 'B': {'freq': 0.35, 'pH': ([5.0, 6.5], [0.7, 0.3])},\n", |
| 48 | + " 'C': {'freq': 0.25, 'pH': ([7.5, 8.5], [0.6, 0.4])}\n", |
| 49 | + " },\n", |
| 50 | + " 'catalyst': {\n", |
| 51 | + " 'X': {'freq': 0.5, 'loading': ([0.1, 0.2, 0.3], [0.2, 0.5, 0.3])},\n", |
| 52 | + " 'Y': {'freq': 0.3, 'loading': ([0.05, 0.15], [0.6, 0.4])},\n", |
| 53 | + " 'Z': {'freq': 0.2, 'loading': ([0.25, 0.35], [0.7, 0.3])}\n", |
| 54 | + " }\n", |
| 55 | + "}\n", |
| 56 | + "\n", |
| 57 | + "\n", |
| 58 | + "# Initialize the designer\n", |
| 59 | + "\n", |
| 60 | + "designer = AdvExpDesigner(continuous_params, conditional_subparameters)" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "# Generate a design with 100 samples, optimizing categorical assignments\n", |
| 70 | + "design = designer.generate_design(seed=123, n_samples=100, optimize_categories=True)\n", |
| 71 | + "design" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": null, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "# Evaluate the design quality metrics\n", |
| 81 | + "metrics = designer.evaluate_design(design)\n", |
| 82 | + "print(\"Design quality metrics:\")\n", |
| 83 | + "for metric, value in metrics.items():\n", |
| 84 | + " print(f\" {metric}: {value:.4f}\")" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": null, |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [], |
| 92 | + "source": [ |
| 93 | + "# Plot histograms of all parameters and subparameters\n", |
| 94 | + "designer.plot_histograms(design)" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": null, |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "# Plot PCA colored by 'buffer_type'\n", |
| 104 | + "designer.plot_pca(design, hue='buffer_type')\n", |
| 105 | + "\n", |
| 106 | + "# Plot UMAP colored by 'catalyst'\n", |
| 107 | + "designer.plot_umap(design, hue='catalyst')" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "# Optimize design over 30 trials with 100 samples each\n", |
| 117 | + "best_design, metrics_df = designer.optimize_design(n_trials=30, n_samples=100)\n", |
| 118 | + "\n", |
| 119 | + "print(\"\\nBest design metrics after optimization:\")\n", |
| 120 | + "print(metrics_df.sort_values('score', ascending=False).head(1))\n" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": null, |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "# Plot quality evolution over trials\n", |
| 130 | + "designer.plot_quality_evolution(metrics_df)" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": null, |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [], |
| 138 | + "source": [ |
| 139 | + "# Plot correlation matrix of the design\n", |
| 140 | + "\n", |
| 141 | + "designer.plot_correlation(best_design)" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": null, |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [], |
| 149 | + "source": [ |
| 150 | + "# Extend the best design by 20 new samples over 10 trials\n", |
| 151 | + "extended_design, extension_summary = designer.extend_design(best_design, n=20, n_trials=10)\n", |
| 152 | + "\n", |
| 153 | + "print(\"\\nExtension summary:\")\n", |
| 154 | + "print(extension_summary)\n", |
| 155 | + "\n", |
| 156 | + "# Plot the extended design\n", |
| 157 | + "designer.plot_histograms(extended_design)" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": null, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "# Compare empirical vs expected frequencies for categorical variables\n", |
| 167 | + "designer.compare_frequencies(extended_design)" |
| 168 | + ] |
| 169 | + } |
| 170 | + ], |
| 171 | + "metadata": { |
| 172 | + "kernelspec": { |
| 173 | + "display_name": "obsidian", |
| 174 | + "language": "python", |
| 175 | + "name": "python3" |
| 176 | + }, |
| 177 | + "language_info": { |
| 178 | + "codemirror_mode": { |
| 179 | + "name": "ipython", |
| 180 | + "version": 3 |
| 181 | + }, |
| 182 | + "file_extension": ".py", |
| 183 | + "mimetype": "text/x-python", |
| 184 | + "name": "python", |
| 185 | + "nbconvert_exporter": "python", |
| 186 | + "pygments_lexer": "ipython3", |
| 187 | + "version": "3.10.14" |
| 188 | + } |
| 189 | + }, |
| 190 | + "nbformat": 4, |
| 191 | + "nbformat_minor": 4 |
| 192 | +} |
0 commit comments