Skip to content

Commit 131d515

Browse files
updating the documentation with large-scale learning algorithms
1 parent dd5bef5 commit 131d515

16 files changed

+3861
-396
lines changed

_modules/MRCpy/mrc.html

Lines changed: 29 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -318,20 +318,45 @@ <h1>Source code for MRCpy.mrc</h1><div class="highlight"><pre>
318318
<span class="sd"> Uncertainty in Artificial Intelligence, 206-215.</span>
319319
<span class="sd"> &lt;https://proceedings.mlr.press/v216/bondugula23a.html&gt;`_</span>
320320

321+
<span class="sd"> ’ccg’</span>
322+
<span class="sd"> Efficient learning algorithm for large number of samples</span>
323+
<span class="sd"> and features based on constraint generation. Efficiently</span>
324+
<span class="sd"> handles the multi-class case (with quasi linear complexity).</span>
325+
<span class="sd"> `eps1` and `eps2` are the parameters that provide a </span>
326+
<span class="sd"> trade-off between time complexity and acccuracy. </span>
327+
<span class="sd"> The maximum number of constraints selected in each iteration</span>
328+
<span class="sd"> is controlled by the hyperparamters `n_max` and `m_max`. </span>
329+
<span class="sd"> These hyperparameters also affect the comptutional complexity.</span>
330+
331+
<span class="sd"> .. seealso:: For more information about the large-scale learning </span>
332+
<span class="sd"> algorithms for 0-1 MRC, one can refer to the following resource:</span>
333+
<span class="sd"> </span>
334+
<span class="sd"> [1] `Bondugula, K., Mazuelas, S., &amp; Pérez, A. (2025).</span>
335+
<span class="sd"> Efficient Large-Scale Learning of Minimax Risk Classifiers.</span>
336+
<span class="sd"> IEEE International Conference on Data Mining</span>
337+
<span class="sd"> &lt;https://www3.cs.stonybrook.edu/~icdm2025/acceptedpapers.html&gt;`_</span>
338+
321339
<span class="sd"> max_iters : `int`, default = `10000`</span>
322340
<span class="sd"> Maximum number of iterations to use</span>
323341
<span class="sd"> for finding the solution of optimization when</span>
324342
<span class="sd"> using the subgradient approach.</span>
325343

326-
<span class="sd"> n_max : `int`, default = `100`</span>
344+
<span class="sd"> n_max : `int`, default = `400`</span>
345+
<span class="sd"> Maximum number of constraints selected in each iteration</span>
346+
<span class="sd"> in case of ’ccg’ solver.</span>
347+
348+
<span class="sd"> m_max : `int`, default = `100`</span>
327349
<span class="sd"> Maximum number of features selected in each iteration</span>
328-
<span class="sd"> in case of ’cg’ solver.</span>
350+
<span class="sd"> in case of ’ccg’ and ’cg’ solver.</span>
329351

330352
<span class="sd"> k_max : `int`, default = `20`</span>
331353
<span class="sd"> Maximum number of iterations in case of ’cg’ solver.</span>
332354

333-
<span class="sd"> eps : `float`, default = `1e-4`</span>
334-
<span class="sd"> Dual constraints&#39; violation threshold for ’cg’ solver. </span>
355+
<span class="sd"> eps1 : `float`, default = `1e-2`</span>
356+
<span class="sd"> Primal constraints&#39; violation threshold for ’ccg’ solver. </span>
357+
358+
<span class="sd"> eps2 : `float`, default = `1e-5`</span>
359+
<span class="sd"> Dual constraints&#39; violation threshold for ’cg’/’ccg’ solver. </span>
335360

336361
<span class="sd"> phi : `str` or `BasePhi` instance, default = &#39;linear&#39;</span>
337362
<span class="sd"> Type of feature mapping function to use for mapping the input data.</span>

_modules/index.html

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -172,6 +172,8 @@ <h1>All modules for which code is available</h1>
172172
<li><a href="MRCpy/phi/random_fourier_phi.html">MRCpy.phi.random_fourier_phi</a></li>
173173
<li><a href="MRCpy/phi/random_relu_phi.html">MRCpy.phi.random_relu_phi</a></li>
174174
<li><a href="MRCpy/phi/threshold_phi.html">MRCpy.phi.threshold_phi</a></li>
175+
<li><a href="sklearn/base.html">sklearn.base</a></li>
176+
<li><a href="sklearn/utils/_metadata_requests.html">sklearn.utils._metadata_requests</a></li>
175177
</ul>
176178

177179
</div>

_modules/sklearn/base.html

Lines changed: 1606 additions & 0 deletions
Large diffs are not rendered by default.

_modules/sklearn/utils/_metadata_requests.html

Lines changed: 1806 additions & 0 deletions
Large diffs are not rendered by default.

auto_examples/further_examples/feature_extraction.html

Lines changed: 25 additions & 25 deletions
Large diffs are not rendered by default.

auto_examples/further_examples/plot_1_image_classification.html

Lines changed: 49 additions & 49 deletions
Large diffs are not rendered by default.

auto_examples/further_examples/plot_2_grid.html

Lines changed: 66 additions & 66 deletions
Large diffs are not rendered by default.

auto_examples/further_examples/plot_3_comparison.html

Lines changed: 66 additions & 66 deletions
Large diffs are not rendered by default.

auto_examples/further_examples/plot_4_upperLower.html

Lines changed: 74 additions & 74 deletions
Large diffs are not rendered by default.

auto_examples/further_examples/z_COVID.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -668,7 +668,7 @@ <h3>Load classification function:<a class="headerlink" href="#load-classificatio
668668
<span class="s2">&quot;True Negative&quot;</span><span class="p">,</span>
669669
<span class="s2">&quot;False Positive&quot;</span><span class="p">,</span>
670670
<span class="p">]</span>
671-
<span class="n">df</span><span class="p">[</span><span class="s2">&quot;Category&quot;</span><span class="p">]</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select" title="numpy.select" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">select</span></a><span class="p">(</span><span class="n">conditions</span><span class="p">,</span> <span class="n">choices</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="s2">&quot;No&quot;</span><span class="p">)</span>
671+
<span class="n">df</span><span class="p">[</span><span class="s2">&quot;Category&quot;</span><span class="p">]</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select" title="numpy.select" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><a href="https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select" title="numpy.select" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><a href="https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select" title="numpy.select" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><a href="https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select" title="numpy.select" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><a href="https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select" title="numpy.select" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">select</span></a></a></a></a></a><span class="p">(</span><span class="n">conditions</span><span class="p">,</span> <span class="n">choices</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="s2">&quot;No&quot;</span><span class="p">)</span>
672672
<span class="n">df</span><span class="o">.</span><span class="n">sort_index</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
673673
<span class="n">df</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="n">by</span><span class="o">=</span><span class="s2">&quot;Category&quot;</span><span class="p">,</span> <span class="n">ascending</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
674674
<span class="k">return</span> <span class="n">df</span>

0 commit comments

Comments
 (0)