@@ -318,20 +318,45 @@ <h1>Source code for MRCpy.mrc</h1><div class="highlight"><pre>
318318< span class ="sd "> Uncertainty in Artificial Intelligence, 206-215.</ span >
319319< span class ="sd "> <https://proceedings.mlr.press/v216/bondugula23a.html>`_</ span >
320320
321+ < span class ="sd "> ’ccg’</ span >
322+ < span class ="sd "> Efficient learning algorithm for large number of samples</ span >
323+ < span class ="sd "> and features based on constraint generation. Efficiently</ span >
324+ < span class ="sd "> handles the multi-class case (with quasi linear complexity).</ span >
325+ < span class ="sd "> `eps1` and `eps2` are the parameters that provide a </ span >
326+ < span class ="sd "> trade-off between time complexity and acccuracy. </ span >
327+ < span class ="sd "> The maximum number of constraints selected in each iteration</ span >
328+ < span class ="sd "> is controlled by the hyperparamters `n_max` and `m_max`. </ span >
329+ < span class ="sd "> These hyperparameters also affect the comptutional complexity.</ span >
330+
331+ < span class ="sd "> .. seealso:: For more information about the large-scale learning </ span >
332+ < span class ="sd "> algorithms for 0-1 MRC, one can refer to the following resource:</ span >
333+ < span class ="sd "> </ span >
334+ < span class ="sd "> [1] `Bondugula, K., Mazuelas, S., & Pérez, A. (2025).</ span >
335+ < span class ="sd "> Efficient Large-Scale Learning of Minimax Risk Classifiers.</ span >
336+ < span class ="sd "> IEEE International Conference on Data Mining</ span >
337+ < span class ="sd "> <https://www3.cs.stonybrook.edu/~icdm2025/acceptedpapers.html>`_</ span >
338+
321339< span class ="sd "> max_iters : `int`, default = `10000`</ span >
322340< span class ="sd "> Maximum number of iterations to use</ span >
323341< span class ="sd "> for finding the solution of optimization when</ span >
324342< span class ="sd "> using the subgradient approach.</ span >
325343
326- < span class ="sd "> n_max : `int`, default = `100`</ span >
344+ < span class ="sd "> n_max : `int`, default = `400`</ span >
345+ < span class ="sd "> Maximum number of constraints selected in each iteration</ span >
346+ < span class ="sd "> in case of ’ccg’ solver.</ span >
347+
348+ < span class ="sd "> m_max : `int`, default = `100`</ span >
327349< span class ="sd "> Maximum number of features selected in each iteration</ span >
328- < span class ="sd "> in case of ’cg’ solver.</ span >
350+ < span class ="sd "> in case of ’ccg’ and ’ cg’ solver.</ span >
329351
330352< span class ="sd "> k_max : `int`, default = `20`</ span >
331353< span class ="sd "> Maximum number of iterations in case of ’cg’ solver.</ span >
332354
333- < span class ="sd "> eps : `float`, default = `1e-4`</ span >
334- < span class ="sd "> Dual constraints' violation threshold for ’cg’ solver. </ span >
355+ < span class ="sd "> eps1 : `float`, default = `1e-2`</ span >
356+ < span class ="sd "> Primal constraints' violation threshold for ’ccg’ solver. </ span >
357+
358+ < span class ="sd "> eps2 : `float`, default = `1e-5`</ span >
359+ < span class ="sd "> Dual constraints' violation threshold for ’cg’/’ccg’ solver. </ span >
335360
336361< span class ="sd "> phi : `str` or `BasePhi` instance, default = 'linear'</ span >
337362< span class ="sd "> Type of feature mapping function to use for mapping the input data.</ span >
0 commit comments