@@ -81,38 +81,32 @@ If you prefer to use Docker to set up and run the application, follow these step
8181
8282- Docker installed on your machine. If you don’t have Docker, download and install it from [ here] ( https://www.docker.com/get-started ) .
8383
84- #### Build the Docker Image
84+ #### Download the docker Image
8585
86- First, clone the repository (if you haven't already) :
86+ First, Pull the docker Image :
8787
8888``` bash
89- git clone https://github.com/NeerajCodz/ObjectDetection.git
90- cd ObjectDetection
91- ```
92-
93- Now, build the Docker image:
94-
95- ``` bash
96- docker build -t objectdetection:latest .
89+ docker pull neerajcodz/objectdetection:latest
9790```
9891
9992#### Run the Docker Container
10093
10194Once the image is built, run the application using this command:
10295
10396``` bash
104- docker run -p 5000:5000 objectdetection:latest
97+ docker run -d -p 8080:80 neerajcodz/ objectdetection:latest
10598```
10699
107- This will start the application on port 5000. Open your browser and go to ` http://localhost:5000 ` to access the FastAPI interface.
100+ This will start the application on port 8080.
101+ Open your browser and go to ` http://localhost:8080 ` to access the interface.
108102
109103### 3. ** Demo**
110104
111105You can try the demo directly online through Hugging Face's Spaces:
112106
113107[ Object Detection Demo] ( https://huggingface.co/spaces/NeerajCodz/ObjectDetection )
114108
115- ## Using the API
109+ ## Using the API (Instable)
116110
117111You can interact with the application via the FastAPI ` /detect ` endpoint to send images and get detection results.
118112
0 commit comments