Skip to content

Commit 3d2d545

Browse files
committed
Update webpage with new problems.
1 parent 91a96e6 commit 3d2d545

File tree

2 files changed

+306
-0
lines changed

2 files changed

+306
-0
lines changed

docs/index.html

Lines changed: 153 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -859,6 +859,159 @@
859859
<td>real-world</td>
860860
<td>Realistic Constrained Multi-Objective Optimization Benchmark Problems from Design</td>
861861
</tr>
862+
<tr>
863+
<td>IOHClustering</td>
864+
<td>suite; generator</td>
865+
<td>1</td>
866+
<td>scalable</td>
867+
<td>continuous</td>
868+
<td>no</td>
869+
<td>no</td>
870+
<td>no</td>
871+
<td>yes</td>
872+
<td>no</td>
873+
<td>Based on ML clustering datasets</td>
874+
<td><a href="https://arxiv.org/pdf/2505.09233" target="_blank">https://arxiv.org/pdf/2505.09233</a></td>
875+
<td><a href="https://github.com/IOHprofiler/IOHClustering" target="_blank">https://github.com/IOHprofiler/IOHClustering</a></td>
876+
<td>artificial, but based on real data</td>
877+
<td>Set of benchmark problems from clustering: optimization task is selecting cluster centers for a given set of data, with the number of clusters defining problem dimensionality. Includes both a suite and a generator</td>
878+
</tr>
879+
<tr>
880+
<td>GNBG-II</td>
881+
<td>suite; generator</td>
882+
<td>1</td>
883+
<td>scalable</td>
884+
<td>continuous</td>
885+
<td>no</td>
886+
<td>no</td>
887+
<td>no</td>
888+
<td>?</td>
889+
<td>no</td>
890+
<td>Implementation in IOHexperimenter: https://github.com/IOHprofiler/IOHGNBG</td>
891+
<td><a href="https://dl.acm.org/doi/pdf/10.1145/3712255.3734271" target="_blank">https://dl.acm.org/doi/pdf/10.1145/3712255.3734271</a></td>
892+
<td><a href="https://github.com/rohitsalgotra/GNBG-II" target="_blank">https://github.com/rohitsalgotra/GNBG-II</a></td>
893+
<td>artificial</td>
894+
<td>Generalized Numerical Benchmark Generator (version 2)</td>
895+
</tr>
896+
<tr>
897+
<td>GNBG</td>
898+
<td>suite; generator</td>
899+
<td>1</td>
900+
<td>scalable</td>
901+
<td>continuous</td>
902+
<td>no</td>
903+
<td>no</td>
904+
<td>no</td>
905+
<td>?</td>
906+
<td>no</td>
907+
<td></td>
908+
<td><a href="https://arxiv.org/abs/2312.07083" target="_blank">https://arxiv.org/abs/2312.07083</a></td>
909+
<td><a href="https://github.com/Danial-Yazdani/GNBG-Generator" target="_blank">https://github.com/Danial-Yazdani/GNBG-Generator</a></td>
910+
<td>artificial</td>
911+
<td>Generalized Numerical Benchmark Generator</td>
912+
</tr>
913+
<tr>
914+
<td>DynamicBinVal</td>
915+
<td>suite</td>
916+
<td>1</td>
917+
<td>scalable</td>
918+
<td>binary</td>
919+
<td>no</td>
920+
<td>yes</td>
921+
<td>no</td>
922+
<td>?</td>
923+
<td>no</td>
924+
<td></td>
925+
<td><a href="https://arxiv.org/pdf/2404.15837" target="_blank">https://arxiv.org/pdf/2404.15837</a></td>
926+
<td><a href="https://github.com/IOHprofiler/IOHexperimenter" target="_blank">https://github.com/IOHprofiler/IOHexperimenter</a></td>
927+
<td>artificial</td>
928+
<td>Four versions of the dynamic binary value problem</td>
929+
</tr>
930+
<tr>
931+
<td>PBO</td>
932+
<td>suite</td>
933+
<td>1</td>
934+
<td>scalable</td>
935+
<td>binary</td>
936+
<td>no</td>
937+
<td>no</td>
938+
<td>no</td>
939+
<td>?</td>
940+
<td>no</td>
941+
<td></td>
942+
<td><a href="https://dl.acm.org/doi/pdf/10.1145/3319619.3326810" target="_blank">https://dl.acm.org/doi/pdf/10.1145/3319619.3326810</a></td>
943+
<td><a href="https://github.com/IOHprofiler/IOHexperimenter" target="_blank">https://github.com/IOHprofiler/IOHexperimenter</a></td>
944+
<td>artificial</td>
945+
<td>Suite of 25 binary optimization problems</td>
946+
</tr>
947+
<tr>
948+
<td>W-model</td>
949+
<td>generator</td>
950+
<td>1</td>
951+
<td>scalable</td>
952+
<td>binary</td>
953+
<td>no</td>
954+
<td>no</td>
955+
<td>no</td>
956+
<td>?</td>
957+
<td>no</td>
958+
<td></td>
959+
<td><a href="https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw" target="_blank">https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw</a></td>
960+
<td><a href="https://github.com/thomasWeise/BBDOB_W_Model" target="_blank">https://github.com/thomasWeise/BBDOB_W_Model</a></td>
961+
<td>artificial</td>
962+
<td>Tunable generator for binary optimization based on several difficulty features</td>
963+
</tr>
964+
<tr>
965+
<td>Submodular Optimitzation</td>
966+
<td>suite</td>
967+
<td>1</td>
968+
<td>scalable</td>
969+
<td>binary</td>
970+
<td>no</td>
971+
<td>no</td>
972+
<td>no</td>
973+
<td>?</td>
974+
<td>no</td>
975+
<td></td>
976+
<td><a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10254181" target="_blank">https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10254181</a></td>
977+
<td><a href="https://github.com/IOHprofiler/IOHexperimenter" target="_blank">https://github.com/IOHprofiler/IOHexperimenter</a></td>
978+
<td>artificial</td>
979+
<td>set of graph-based submodular optimization problems from 4 problem types</td>
980+
</tr>
981+
<tr>
982+
<td>CEC2013</td>
983+
<td>suite</td>
984+
<td>1</td>
985+
<td>scalable</td>
986+
<td>continuous</td>
987+
<td>no</td>
988+
<td>no</td>
989+
<td>no</td>
990+
<td>?</td>
991+
<td>no</td>
992+
<td>Implementation available in IOHexperimenter: https://github.com/IOHprofiler/IOHexperimenter</td>
993+
<td><a href="https://peerj.com/articles/cs-2671/CEC2013.pdf" target="_blank">https://peerj.com/articles/cs-2671/CEC2013.pdf</a></td>
994+
<td><a href="https://github.com/P-N-Suganthan/CEC2013" target="_blank">https://github.com/P-N-Suganthan/CEC2013</a></td>
995+
<td>artificial</td>
996+
<td>suite used for cec2013 competition</td>
997+
</tr>
998+
<tr>
999+
<td>CEC2022</td>
1000+
<td>suite</td>
1001+
<td>1</td>
1002+
<td>scalable</td>
1003+
<td>continuous</td>
1004+
<td>no</td>
1005+
<td>no</td>
1006+
<td>no</td>
1007+
<td>?</td>
1008+
<td>no</td>
1009+
<td>Implementation available in IOHexperimenter: https://github.com/IOHprofiler/IOHexperimenter</td>
1010+
<td><a href="https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf" target="_blank">https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf</a></td>
1011+
<td><a href="https://github.com/P-N-Suganthan/2022-SO-BO" target="_blank">https://github.com/P-N-Suganthan/2022-SO-BO</a></td>
1012+
<td>artificial</td>
1013+
<td>suite used for cec2022 competition</td>
1014+
</tr>
8621015
</tbody>
8631016
<tfoot><tr><th>name</th> <th>suite/generator/single</th> <th>objectives</th> <th>dimensionality</th> <th>variable type</th> <th>constraints</th> <th>dynamic</th> <th>noise</th> <th>multimodal</th> <th>multi-fidelity</th> <th>other info</th> <th>reference</th> <th>implementation</th> <th>source (real-world/artificial)</th> <th>textual description</th></tr> </tfoot></table>
8641017

docs/problems.html

Lines changed: 153 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -835,5 +835,158 @@
835835
<td>real-world</td>
836836
<td>Realistic Constrained Multi-Objective Optimization Benchmark Problems from Design</td>
837837
</tr>
838+
<tr>
839+
<td>IOHClustering</td>
840+
<td>suite; generator</td>
841+
<td>1</td>
842+
<td>scalable</td>
843+
<td>continuous</td>
844+
<td>no</td>
845+
<td>no</td>
846+
<td>no</td>
847+
<td>yes</td>
848+
<td>no</td>
849+
<td>Based on ML clustering datasets</td>
850+
<td><a href="https://arxiv.org/pdf/2505.09233" target="_blank">https://arxiv.org/pdf/2505.09233</a></td>
851+
<td><a href="https://github.com/IOHprofiler/IOHClustering" target="_blank">https://github.com/IOHprofiler/IOHClustering</a></td>
852+
<td>artificial, but based on real data</td>
853+
<td>Set of benchmark problems from clustering: optimization task is selecting cluster centers for a given set of data, with the number of clusters defining problem dimensionality. Includes both a suite and a generator</td>
854+
</tr>
855+
<tr>
856+
<td>GNBG-II</td>
857+
<td>suite; generator</td>
858+
<td>1</td>
859+
<td>scalable</td>
860+
<td>continuous</td>
861+
<td>no</td>
862+
<td>no</td>
863+
<td>no</td>
864+
<td>?</td>
865+
<td>no</td>
866+
<td>Implementation in IOHexperimenter: https://github.com/IOHprofiler/IOHGNBG</td>
867+
<td><a href="https://dl.acm.org/doi/pdf/10.1145/3712255.3734271" target="_blank">https://dl.acm.org/doi/pdf/10.1145/3712255.3734271</a></td>
868+
<td><a href="https://github.com/rohitsalgotra/GNBG-II" target="_blank">https://github.com/rohitsalgotra/GNBG-II</a></td>
869+
<td>artificial</td>
870+
<td>Generalized Numerical Benchmark Generator (version 2)</td>
871+
</tr>
872+
<tr>
873+
<td>GNBG</td>
874+
<td>suite; generator</td>
875+
<td>1</td>
876+
<td>scalable</td>
877+
<td>continuous</td>
878+
<td>no</td>
879+
<td>no</td>
880+
<td>no</td>
881+
<td>?</td>
882+
<td>no</td>
883+
<td></td>
884+
<td><a href="https://arxiv.org/abs/2312.07083" target="_blank">https://arxiv.org/abs/2312.07083</a></td>
885+
<td><a href="https://github.com/Danial-Yazdani/GNBG-Generator" target="_blank">https://github.com/Danial-Yazdani/GNBG-Generator</a></td>
886+
<td>artificial</td>
887+
<td>Generalized Numerical Benchmark Generator</td>
888+
</tr>
889+
<tr>
890+
<td>DynamicBinVal</td>
891+
<td>suite</td>
892+
<td>1</td>
893+
<td>scalable</td>
894+
<td>binary</td>
895+
<td>no</td>
896+
<td>yes</td>
897+
<td>no</td>
898+
<td>?</td>
899+
<td>no</td>
900+
<td></td>
901+
<td><a href="https://arxiv.org/pdf/2404.15837" target="_blank">https://arxiv.org/pdf/2404.15837</a></td>
902+
<td><a href="https://github.com/IOHprofiler/IOHexperimenter" target="_blank">https://github.com/IOHprofiler/IOHexperimenter</a></td>
903+
<td>artificial</td>
904+
<td>Four versions of the dynamic binary value problem</td>
905+
</tr>
906+
<tr>
907+
<td>PBO</td>
908+
<td>suite</td>
909+
<td>1</td>
910+
<td>scalable</td>
911+
<td>binary</td>
912+
<td>no</td>
913+
<td>no</td>
914+
<td>no</td>
915+
<td>?</td>
916+
<td>no</td>
917+
<td></td>
918+
<td><a href="https://dl.acm.org/doi/pdf/10.1145/3319619.3326810" target="_blank">https://dl.acm.org/doi/pdf/10.1145/3319619.3326810</a></td>
919+
<td><a href="https://github.com/IOHprofiler/IOHexperimenter" target="_blank">https://github.com/IOHprofiler/IOHexperimenter</a></td>
920+
<td>artificial</td>
921+
<td>Suite of 25 binary optimization problems</td>
922+
</tr>
923+
<tr>
924+
<td>W-model</td>
925+
<td>generator</td>
926+
<td>1</td>
927+
<td>scalable</td>
928+
<td>binary</td>
929+
<td>no</td>
930+
<td>no</td>
931+
<td>no</td>
932+
<td>?</td>
933+
<td>no</td>
934+
<td></td>
935+
<td><a href="https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw" target="_blank">https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw</a></td>
936+
<td><a href="https://github.com/thomasWeise/BBDOB_W_Model" target="_blank">https://github.com/thomasWeise/BBDOB_W_Model</a></td>
937+
<td>artificial</td>
938+
<td>Tunable generator for binary optimization based on several difficulty features</td>
939+
</tr>
940+
<tr>
941+
<td>Submodular Optimitzation</td>
942+
<td>suite</td>
943+
<td>1</td>
944+
<td>scalable</td>
945+
<td>binary</td>
946+
<td>no</td>
947+
<td>no</td>
948+
<td>no</td>
949+
<td>?</td>
950+
<td>no</td>
951+
<td></td>
952+
<td><a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10254181" target="_blank">https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10254181</a></td>
953+
<td><a href="https://github.com/IOHprofiler/IOHexperimenter" target="_blank">https://github.com/IOHprofiler/IOHexperimenter</a></td>
954+
<td>artificial</td>
955+
<td>set of graph-based submodular optimization problems from 4 problem types</td>
956+
</tr>
957+
<tr>
958+
<td>CEC2013</td>
959+
<td>suite</td>
960+
<td>1</td>
961+
<td>scalable</td>
962+
<td>continuous</td>
963+
<td>no</td>
964+
<td>no</td>
965+
<td>no</td>
966+
<td>?</td>
967+
<td>no</td>
968+
<td>Implementation available in IOHexperimenter: https://github.com/IOHprofiler/IOHexperimenter</td>
969+
<td><a href="https://peerj.com/articles/cs-2671/CEC2013.pdf" target="_blank">https://peerj.com/articles/cs-2671/CEC2013.pdf</a></td>
970+
<td><a href="https://github.com/P-N-Suganthan/CEC2013" target="_blank">https://github.com/P-N-Suganthan/CEC2013</a></td>
971+
<td>artificial</td>
972+
<td>suite used for cec2013 competition</td>
973+
</tr>
974+
<tr>
975+
<td>CEC2022</td>
976+
<td>suite</td>
977+
<td>1</td>
978+
<td>scalable</td>
979+
<td>continuous</td>
980+
<td>no</td>
981+
<td>no</td>
982+
<td>no</td>
983+
<td>?</td>
984+
<td>no</td>
985+
<td>Implementation available in IOHexperimenter: https://github.com/IOHprofiler/IOHexperimenter</td>
986+
<td><a href="https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf" target="_blank">https://github.com/P-N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf</a></td>
987+
<td><a href="https://github.com/P-N-Suganthan/2022-SO-BO" target="_blank">https://github.com/P-N-Suganthan/2022-SO-BO</a></td>
988+
<td>artificial</td>
989+
<td>suite used for cec2022 competition</td>
990+
</tr>
838991
</tbody>
839992
<tfoot><tr><th>name</th> <th>suite/generator/single</th> <th>objectives</th> <th>dimensionality</th> <th>variable type</th> <th>constraints</th> <th>dynamic</th> <th>noise</th> <th>multimodal</th> <th>multi-fidelity</th> <th>other info</th> <th>reference</th> <th>implementation</th> <th>source (real-world/artificial)</th> <th>textual description</th></tr> </tfoot></table>

0 commit comments

Comments
 (0)