Releases: PreferredAI/cornac
Releases · PreferredAI/cornac
Cornac 1.0.0
New models
- Neural Matrix Factorization (NeuMF) / Neural Collaborative Filtering (NCF) (#215)
- Generalized Matrix Factorization (GMF) (#216)
- Multi-Layer Perceptron (MLP) (#217)
New features and improvements
- Update
VAECFmodel (#213) - Add
num_zerosargument intoDataset.uir_iter()to support negative sampling (#214) - Add
val_setintofit()function for model selection (#219) - Support
early stoppinginRecommender(#220) - Fix bug in
read_text()function of reader (#221) - Unify
TrainSetandTestSetinto single objectDataset(#222) - Optimize
evaluate()function inBaseMethod(#223) Datasetchecks duplicate observations independently (#224)
Cornac 0.3.5
Cornac 0.3.4
Cornac 0.3.3
Cornac 0.3.2
Cornac 0.3.1
New features and improvements
- Rename
ModuletoModality - Add a tutorial for adding a new model into Cornac
- Reorder the list of models by year then alphabetically
- Update description, tagline
- Improve documentation
Cornac 0.3.0
New models
- Variational Autoencoder for Collaborative Filtering (VAECF)
- Collaborative Topic Modelling (CTR)
New features and improvements
- Update
CVAEto use mini-batch gradient descent - Remove
stopwordsfromTextModuleandCountVectorizer, only inputstopwordsdirectly toBaseTokenizer GraphModulecan buildKNNfrom input feature matrix- Fix bug of partitioning in
CrossValidation - Swap both
idsaccording to data inFeatureModuleandTextModule
Cornac 0.2.1
New models
- Collaborative Variational Autoencoder (CVAE)
New features and improvements
- Update
from_splits()function ofBaseMethodto support multimodal data modules - Data modules
build()functions returnself
Beta Release
New models
- Convolutional Matrix Factorization (ConvMF)
- Collaborative Deep Ranking (CDR)
- Visual Matrix Factorization (VMF)
- Matrix Co-Factorization (MCF)
- Social Bayesian Personalized Ranking (SBPR)
- Social Recommendation (SoRec)
New built-in datasets
- Netflix
- Tradesy
- Amazon Office
- CiteULike
- Epinions
New features and improvements
- Support multimodal recommenders with new data module including
TextModule,ImageModule, andGraphModuleindata. Readersupport data filtering based onset of users/itemsanduser/item threshold.- Models can access to
user_text,user_image,user_graph,item_text,item_image, anditem_graphthroughMultimodalTrainSetwhich is input of thefit()function.
Credits
Thanks to our 4 contributors (alphabetical) whose commits are featured in this release:
Alpha Release
New models
- Bayesian Personalized Ranking (BPR)
- Collaborative Context Poisson Factorization (C2PF)
- Collaborative Deep Learning (CDL)
- Collaborative Ordinal Embedding (COE)
- Hierarchical Poisson Factorization (HPF)
- Indexable Bayesian Personalized Ranking (IBPR)
- Online Indexable Bayesian Personalized Ranking (Online IBPR)
- Probabilistic Collaborative Representation Learning (PCRL)
- Probabilistic Matrix Factorization (PMF)
- Spherical K-means (SKM)
- Visual Bayesian Personalized Ranking (VBPR)
Credits
Thanks to our 5 contributors (alphabetical) whose commits are featured in this release: