Skip to content

nuScenes cannot reproduce the results #104

@boyang9602

Description

@boyang9602

Hi,

I tried to run the evaluation using the models which were removed in this commit. Then I ran the quantative analysis but the results are far worse than that in the paper.

I split the full data set into train, test and val using the provided process.py script following the guide

In case you also want a validation set generated (by default this will just produce the training and test sets), replace line 406 in process_data.py with:

val_scene_names = val_scenes

Below is the results for vehicle

FDE Results for: int_ee
-----------------PH: 2 -------------------
FDE Mean @1.0s: 0.7134760695972244
RB Viols @1.0s: 0.00662769225994662
FDE @1.0s: 0.5380502227267765
KDE @1.0s: -0.5028318785009163
----------------------------------------------
-----------------PH: 4 -------------------
FDE Mean @2.0s: 1.9975224575706407
RB Viols @2.0s: 0.034035627831916083
FDE @2.0s: 1.4918774864657154
KDE @2.0s: 0.418281733790496
----------------------------------------------
-----------------PH: 6 -------------------
FDE Mean @3.0s: 3.7033154076606456
RB Viols @3.0s: 0.08517236670597728
FDE @3.0s: 2.699203884395092
KDE @3.0s: 1.0535876062621374
----------------------------------------------
-----------------PH: 8 -------------------
FDE Mean @4.0s: 5.804041245565657
RB Viols @4.0s: 0.1444243994786171
FDE @4.0s: 4.179235735624605
KDE @4.0s: 1.5966484710987425
----------------------------------------------

FDE Results for: int_ee_me
-----------------PH: 2 -------------------
FDE Mean @1.0s: 0.7008344335547151
RB Viols @1.0s: 0.006146064800446899
FDE @1.0s: 0.5922799374447909
KDE @1.0s: -1.2356929101581047
----------------------------------------------
-----------------PH: 4 -------------------
FDE Mean @2.0s: 1.9075230766300963
RB Viols @2.0s: 0.026667106324871206
FDE @2.0s: 1.6498426923843936
KDE @2.0s: -0.15959527942645782
----------------------------------------------
-----------------PH: 6 -------------------
FDE Mean @3.0s: 3.51359302112881
RB Viols @3.0s: 0.07011046800322761
FDE @3.0s: 2.997894682140819
KDE @3.0s: 0.6260908819550914
----------------------------------------------
-----------------PH: 8 -------------------
FDE Mean @4.0s: 5.540642291109636
RB Viols @4.0s: 0.12788711129042268
FDE @4.0s: 4.693464571494656
KDE @4.0s: 1.2753486907234253
----------------------------------------------

FDE Results for: vel_ee
-----------------PH: 2 -------------------
FDE Mean @1.0s: 1.0865936039715742
RB Viols @1.0s: 0.008077260877661226
FDE @1.0s: 0.8246370557999223
KDE @1.0s: 5.759522830588884
----------------------------------------------
-----------------PH: 4 -------------------
FDE Mean @2.0s: 2.53460643671403
RB Viols @2.0s: 0.04206272112221464
FDE @2.0s: 1.8659767084663388
KDE @2.0s: 4.496077915865272
----------------------------------------------
-----------------PH: 6 -------------------
FDE Mean @3.0s: 4.303775744650805
RB Viols @3.0s: 0.09549359133511266
FDE @3.0s: 3.0955748259629154
KDE @3.0s: 4.258032260852793
----------------------------------------------
-----------------PH: 8 -------------------
FDE Mean @4.0s: 6.380693848054547
RB Viols @4.0s: 0.15273570852212773
FDE @4.0s: 4.513898783223498
KDE @4.0s: 4.306559906932642
----------------------------------------------

FDE Results for: robot
-----------------PH: 2 -------------------
FDE Mean @1.0s: 0.646239083876121
RB Viols @1.0s: 0.005744594448254702
FDE @1.0s: 0.586071305811502
KDE @1.0s: 1.6044233667942858
----------------------------------------------
-----------------PH: 4 -------------------
FDE Mean @2.0s: 1.787512170553925
RB Viols @2.0s: 0.023858047864852183
FDE @2.0s: 1.6299969047674239
KDE @2.0s: 2.676255090655095
----------------------------------------------
-----------------PH: 6 -------------------
FDE Mean @3.0s: 3.4118360922321065
RB Viols @3.0s: 0.05805988521098798
FDE @3.0s: 3.11633133756069
KDE @3.0s: 3.4138199082936795
----------------------------------------------
-----------------PH: 8 -------------------
FDE Mean @4.0s: 5.510224740288833
RB Viols @4.0s: 0.10027347218712775
FDE @4.0s: 5.040514456981584
KDE @4.0s: 3.969074325345989
----------------------------------------------

The commands for running the evaluation is shown below

#!/bin/bash

for folder in int_ee int_ee_me robot vel_ee; do
    for ph in 2 4 6 8; do
        cmd="python evaluate.py --model models/$folder --checkpoint=12 --data ../processed/nuScenes_test_full.pkl --output_path results --output_tag $folder --node_type VEHICLE --prediction_horizon $ph"
        echo $cmd
        eval $cmd
    done
done

for folder in int_ee_me vel_ee; do
    for ph in 2 4 6 8; do
        cmd="python evaluate.py --model models/$folder --checkpoint=12 --data ../processed/nuScenes_test_full.pkl --output_path results --output_tag ${folder}_ped --node_type PEDESTRIAN --prediction_horizon $ph"
        echo $cmd
        eval $cmd
    done
done

Did I do anything wrong for the evaluation or analysis? Thank you!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions