Skip to content

Extract to function code to create AgD from IPD #46

@n8thangreen

Description

@n8thangreen
covariate_defns_ald <- list(
  PF_cont_1 = list(type = continuous(mean = meanX_BC[1], sd = sdX[1]),
                    role = "prognostic"),
  PF_cont_2 = list(type = continuous(mean = meanX_BC[2], sd = sdX[2]),
                    role = "prognostic"),
  EM_cont_1 = list(type = continuous(mean = meanX_EM_BC[1], sd = sdX_EM[1]),
                    role = "effect_modifier"),
  EM_cont_2 = list(type = continuous(mean = meanX_EM_BC[2], sd = sdX_EM[2]),
                    role = "effect_modifier")
)

BC.IPD <- simcovariates::gen_data(
  N = N,
  b_0 = b_0,
  b_trt = b_trt,
  covariate_defns = covariate_defns_ald,
  b_prognostic = b_prognostic,
  b_effect_modifier = b_effect_modifier,
  cor_matrix = cor_matrix,
  trt_assignment = list(prob_trt1 = allocation),
  family = binomial("logit"))

BC.IPD$trt <- factor(BC.IPD$trt, labels = c("C", "B"))

# covariate summary statistics
# assume same between treatments
cov.X <- 
  BC.IPD %>%
  as.data.frame() |> 
  dplyr::select(matches("^(PF|EM)"), trt) |> 
  tidyr::pivot_longer(
    cols = starts_with("PF") | starts_with("EM"),
    names_to = "variable",
    values_to = "value") |>
  group_by(variable) %>%
  summarise(
    mean = mean(value),
    sd = sd(value)
  ) %>%
  tidyr::pivot_longer(
    cols = c("mean", "sd"),
    names_to = "statistic",
    values_to = "value") %>%
  ungroup() |> 
  mutate(trt = NA)

# outcome
summary.y <- 
  BC.IPD |> 
  as.data.frame() |> 
  dplyr::select(y, trt) %>%
  tidyr::pivot_longer(cols = "y",
               names_to = "variable",
               values_to = "value") %>%
  group_by(variable, trt) %>%
  summarise(
    mean = mean(value),
    sd = sd(value),
    sum = sum(value)
  ) %>%
  tidyr::pivot_longer(
    cols = c("mean", "sd", "sum"),
    names_to = "statistic",
    values_to = "value") %>%
  ungroup()

# sample sizes
summary.N <- 
  BC.IPD |> 
  group_by(trt) |> 
  count(name = "N") |> 
  tidyr::pivot_longer(
    cols = "N",
    names_to = "statistic",
    values_to = "value") |> 
  mutate(variable = NA_character_) |> 
  dplyr::select(variable, statistic, value, trt)
  
ald_trial <- rbind.data.frame(cov.X, summary.y, summary.N)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions