Skip to content

Unable to reproduce the results #20

@wuzhiyue111

Description

@wuzhiyue111

The LFM code is very comprehensive and is a very good work. We tried to reproduce your results. The FID of lsun_church dataset in your repo is 5.54, but we got the 6.61 (best). We believe that this paper is authentic and reliable. Can you help me see where I went wrong? Thank you very much. On the lsun_church dataset, we used the following command to start the program in A6000:

accelerate launch --multi_gpu --num_processes 10 train_flow_latent.py --exp church_f8_dit --dataset lsun_church --datadir <our/data/dir> --batch_size 48 --num_workers 4 --num_epoch 600 --image_size 256 --f 8 --num_in_channels 4 --num_out_channels 4 --nf 256 --ch_mult 1 2 3 4 --attn_resolution 16 8 4 --num_res_blocks 2 --lr 1e-4 --scale_factor 0.18215 --no_lr_decay --model_type DiT-L/2 --num_classes 1 --label_dropout 0. --save_content --save_content_every 10

The environment is

torch==2.0.0 numpy==1.26.4 lmdb==1.4.1 diffusers==0.20.0 transformers==4.30.2 huggingface_hub==0.14.1 accelerate==0.20.3 torchdiffeq==0.2.3 ml_collections==0.1.1 omegaconf==2.3.0 timm==0.9.2 ninja==1.11.1 blobfile==2.0.2 accelerate==0.20.3 einops==0.6.1 opencv-python==4.8.1.78 scikit-image==0.21.0

The command of best evaluation result is

python test_flow_latent.py --exp church_f8_dit --dataset lsun_church --batch_size 80 --epoch_id 575 --image_size 256 --f 8 --num_in_channels 4 --num_out_channels 4 --nf 256 --ch_mult 1 2 3 4 --attn_resolution 16 8 4 --num_res_blocks 2 --master_port 12345 --num_process_per_node 1 --method dopri5 --model_type DiT-L/2 --num_classes 1 --label_dropout 0. --compute_fid --pretrained_autoencoder_ckpt <our/ckpt/dir>

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions