Skip to content

Commit e951268

Browse files
committed
bootridge: minor changes to documentation
1 parent c1cd4b5 commit e951268

File tree

1 file changed

+10
-6
lines changed

1 file changed

+10
-6
lines changed

inst/bootridge.m

Lines changed: 10 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -271,9 +271,9 @@
271271
% For residual correlations between outcomes, credible intervals are
272272
% computed in closed form using Fisher’s z-transform with effective degrees
273273
% of freedom df_t, symmetric intervals on the z-scale, and back-
274-
% transformation [15]. Bayes factors for H0: rho = 0 use the exact change-
274+
% transformation [15]. Bayes factors for H0: r = 0 use the exact change-
275275
% of-variables prior induced by a flat prior on the correlation coefficient:
276-
% rho ~ Uniform(-1, 1) ==> z = atanh(rho) ~ Logistic(0, 1/2),
276+
% r ~ Uniform (-1, 1) ==> z = atanh (r) ~ Logistic (0, 1/2),
277277
% so the prior density at z = 0 equals 0.5. Posterior densities on z are
278278
% t-marginal with df_t, providing a closed-form, non-arbitrary Savage–
279279
% Dickey BF for residual correlations [3, 16].
@@ -298,8 +298,11 @@
298298
% Inv-Gamma(df_t/2, Sigma_Y_hat), induced by variance estimation
299299
% and marginalization and used to generate the t-layer.
300300
%
301-
% o Correlations: Flat/Uniform prior, U(-1, 1), on the correlation
302-
% coefficient scale.
301+
% o Correlations: Flat/Uniform prior, U(-1, 1), on the correlation
302+
% coefficient scale. While non-informative for r, this induces a
303+
% weakly informative Logistic prior on the Fisher’s z scale. At the
304+
% point null (0), the prior density is 0.5, approximately equivalent
305+
% to a N(0, 0.8) prior.
303306
%
304307
% UNCERTAINTY AND CLUSTERING:
305308
% The design effect specified by DEFF is integrated throughout the model
@@ -777,7 +780,7 @@
777780

778781
% Assemble table-like cell array for correlations
779782
R_table = cat (1, ...
780-
{'Correlation', 'R', 'CI_lower', 'CI_upper', 'BF10', 'lnBF10'}, ...
783+
{'Correlation', 'r', 'CI_lower', 'CI_upper', 'BF10', 'lnBF10'}, ...
781784
[labels(:), num2cell([R(:), R_CI_lower(:), R_CI_upper(:), ...
782785
BF10_R(:), lnBF10_R(:)])])';
783786

@@ -1126,7 +1129,8 @@
11261129
%! Var_true = var (BOOTSTAT, 0, 2);
11271130
%! Var_iid = var (BOOTSTAT_SRS, 0, 2);
11281131
%! DEFF = mean (Var_true ./ Var_iid);
1129-
%! % Or more simply, we can use the deffcalc function, which does the same thing
1132+
%! % Or more simply, we can use the deffcalc function, which does the same thing.
1133+
%! % We take the mean DEFF across all contrasts for a stable global penalty.
11301134
%! DEFF = mean (deffcalc (BOOTSTAT, BOOTSTAT_SRS))
11311135
%!
11321136
%! % Fit a cluster-robust empirical Bayes model

0 commit comments

Comments
 (0)