Releases: cdt15/lingam
Releases · cdt15/lingam
v1.8.0
New Features
- Added
MultiGroupRCDalgorithm, RCD for multiple datasets. - Add
extract_ancestorsmethod tolingam.utils. - Modified
hsic.pyto speed up independence test HSIC. - Added to
utils.make_dotthe ability to highlight paths between variables in a causal graph. - Added
utils.make_dot_hightlightmethod to highlight ancestors and descendants of a specified variable in a causal graph.
Experimental features
- Added
CausalDataGeneratortool to lingam.experimental.
Code Fixes
- Fixed VAR trend argument used in
VARLiNGAM(#86)
Documentation
- Minor text correction on causal_effect.rst
v1.7.1
v1.7.0
v1.6.0
New Features
- Added
LiNAandMDLiNAalgorithm - Added
RESITalgorithm
v1.5.5
New Features
- Added
get_pathsmethod to the result of bootstrapping that searches all paths between specified variables and outputs the bootstrap probability for each path inVARLiNGAM,VARMALiNGAMandLongitudinalLiNGAM
Code Fixes
- Changed the timing for creating the partial orders when applying prior knowledge in
DirectLiNGAM - Fixed that prior knowledge is not applied when there are duplicate no_paths (#34)
v1.5.4
New Features
- Added
get_pathsmethod toBootstrapResultthat searches all paths between specified variables and outputs the bootstrap probability for each path inICALiNGAM,DirectLiNGAM,MultiGroupDirectLiNGAM,BottomUpParceLiNGAMandRCD
v1.5.3
v1.5.2
New Features
- Modify algorithm for prior knowledge implemented in
DirectLiNGAMandMultiGroupDirectLiNGAM - Add
prior_knowledgeoption to specify prior knowledge toBottomUpParceLiNGAM
Installation
- Add statsmodels to install_requires in
setup.py(#22)
Code Fixes
- Rename the function from
BootstrapResult.get_causal_effectstoBootstrapResult.get_total_causal_effects - Change the diagonal component of the prior knowledge matrix created by `utils.make_prior_knowledge from 0 to -1
v1.5.1
- Add get_error_independence_p_values function to all algorithms
- Changed to use Adaptive lasso when estimating the total effect
v1.5.0
- Add RCD algorithm