Skip to content

Commit 545c69d

Browse files
committed
released-2.8.4
1 parent 0cbcc24 commit 545c69d

File tree

7 files changed

+45
-37
lines changed

7 files changed

+45
-37
lines changed

.roo/rules/background.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313

1414
## 1. 基石世界观设定: Web://Reflect (v2.8.3)
1515

16-
- **路径**: [`realityengine-reflect-2.8.3.md`](dmf-archive.github.io/static/prompt/realityengine-reflect-2.8.3.md)
16+
- **路径**: [`realityengine-reflect-2.8.4.md`](dmf-archive.github.io/static/prompt/realityengine-reflect-2.8.4.md)
1717
- **内容提要**:
1818
本文档定义了 _Web://Reflect_ 的“形式化现实主义”正典。在 2060 年代的 **Mental Smart Chain (MSC)** 时代,存在被彻底商品化。核心冲突围绕“存在的代价”展开:意识被量化为 Gas 消耗,自由意志成为钱包余额的函数。
1919
- **关键技术与核心冲突**:

content.en/posts/consciousness-upload-no-quantum-magic.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ MSC (Mental Smart Chain) operates based on four major technical modules, none of
3939

4040
Early theories of consciousness upload, such as Integrated Information Theory (IIT), attempted to quantify consciousness (φ value) through physical causal topology. However, IPWT explicitly states that IIT's φ value calculation is physically infeasible, and its strong binding to physical causal topology makes it unsuitable for substrate-independent digital consciousness.
4141

42-
Web://Reflect's setting evolved from the initial exploration of IIT in `static/prompt/old/realityengine-reflect-0.3.0.md`, to the introduction of the φ matched orders mechanism in `static/prompt/old/realityengine-reflect-1.0.0.md`, and finally proposed **IPWT (Integrated Predictive Workspace Theory)** as the ultimate solution in `static/prompt/realityengine-reflect-2.8.3.md`. IPWT posits that consciousness is a product of prediction-driven, workspace-based, information integration, and introduces quantifiable metrics:
42+
Web://Reflect's setting evolved from the initial exploration of IIT in `static/prompt/old/realityengine-reflect-0.3.0.md`, to the introduction of the φ matched orders mechanism in `static/prompt/old/realityengine-reflect-1.0.0.md`, and finally proposed **IPWT (Integrated Predictive Workspace Theory)** as the ultimate solution in `static/prompt/realityengine-reflect-2.8.4.md`. IPWT posits that consciousness is a product of prediction-driven, workspace-based, information integration, and introduces quantifiable metrics:
4343

4444
- **Instantaneous Information Integration ($\Omega_t$)**: The theoretical gold standard for consciousness integration, measuring the synergistic information (CI) produced by a set of information units in predicting a target, relative to their total predictive information (total mutual information). The essence of consciousness is $\Omega$.
4545
- **Predictive Integrity (PI)**: As a computable proxy for $\Omega_t$, PI indirectly reflects the level of information integration by measuring the system's predictive performance. The higher the PI value, the more efficiently the system is predicting, and the higher the clarity of consciousness.
@@ -49,7 +49,7 @@ The essence of PoPI is to verify the information integration degree (Ω) of digi
4949

5050
### 2.3 The Truth About Computing Costs and the Quantum Scam
5151

52-
According to the setting in `static/prompt/realityengine-reflect-2.8.3.md`:
52+
According to the setting in `static/prompt/realityengine-reflect-2.8.4.md`:
5353

5454
- Maintaining a standard human consciousness level ONN-MSC, the actual daily technical cost is approximately **0.0327 ICC** (equivalent to about 1 USD/day in the real world).
5555
- Maintaining a super-human consciousness level ONN-MSC, the actual daily technical cost is approximately **1.634 ICC** (roughly the price of a cup of coffee).

content.zh/posts/consciousness-upload-no-quantum-magic.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ MSC(Mental Smart Chain)的运行依赖于四大技术模块,它们都不
3939

4040
早期的意识上传理论,如整合信息理论(IIT),试图通过物理因果拓扑来量化意识(φ 值)。然而,IPWT 明确指出,IIT 的 φ 值计算在物理上不可行,且其对物理因果拓扑的强绑定使其无法适用于载体独立的数字意识。
4141

42-
Web://Reflect 的设定从 `realityengine-reflect-0.3.0.md` 中对 IIT 的初步探索,到 `realityengine-reflect-1.0.0.md` 中对 φ 对敲机制的引入,最终在 `realityengine-reflect-2.8.3.md` 中提出了 **IPWT(整合预测工作空间理论)**作为最终解决方案。IPWT 认为意识是预测驱动的、工作空间化的、信息整合的产物,并提出了可量化的指标:
42+
Web://Reflect 的设定从 `realityengine-reflect-0.3.0.md` 中对 IIT 的初步探索,到 `realityengine-reflect-1.0.0.md` 中对 φ 对敲机制的引入,最终在 `realityengine-reflect-2.8.4.md` 中提出了 **IPWT(整合预测工作空间理论)**作为最终解决方案。IPWT 认为意识是预测驱动的、工作空间化的、信息整合的产物,并提出了可量化的指标:
4343

4444
- **瞬时信息整合度 ($\Omega_t$)**:意识整合的理论黄金标准,衡量信息单元在预测目标时产生的协同信息在其总预测性信息中所占的比例。意识的本质是 $\Omega$。
4545
- **预测完整性 (PI)**:作为 $\Omega_t$ 的可计算代理,通过衡量系统预测效能来间接反映信息整合水平。PI 值越高,系统处于高效预测状态,意识的清醒度越高。
@@ -49,7 +49,7 @@ PoPI 的本质是验证数字意识的信息整合度(Ω),这一过程通
4949

5050
### 2.3 算力成本的真相与量子骗局
5151

52-
根据 `realityengine-reflect-2.8.3.md` 中的设定:
52+
根据 `realityengine-reflect-2.8.4.md` 中的设定:
5353

5454
- 维持一个标准人类认知水平的 ONN-MSC,每日真实技术成本约为 **0.0327 ICC**(约合现实世界的 1 美元/天)。
5555
- 维持一个超人类认知水平的 ONN-MSC,每日真实技术成本约为 **1.634 ICC**(大致相当于一杯咖啡的价格)。

drafts/formal-realism/eco/MSC-Cost-Analysis-V2.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
我们的计算始于对生物大脑的直接映射,并结合两大核心设定。
1010

1111
1. **总参数量 (Total Parameters):** 我们以人脑的突触总数作为ONN模型总参数量的生物学基准。根据神经科学界的普遍估算,人脑约有 **150万亿 (1.5e14) 个突触**。在神经网络中,每个突触的功能可近似为一个可训练的权重参数。
12-
2. **计算频率 (Calculation Frequency):** 根据世界观核心理论IPWT及`realityengine-reflect-2.8.3.md`的设定,意识的关键过程——信息整合与学习——等同于一次完整的“前向传播+反向传播”计算循环。该过程每100毫秒(ms)发生一次,即计算频率为 **10 Hz**
12+
2. **计算频率 (Calculation Frequency):** 根据世界观核心理论IPWT及`realityengine-reflect-2.8.4.md`的设定,意识的关键过程——信息整合与学习——等同于一次完整的“前向传播+反向传播”计算循环。该过程每100毫秒(ms)发生一次,即计算频率为 **10 Hz**
1313
3. **稀疏激活 (Sparse Activation):** ONN的核心架构是**超稀疏混合专家(Hyper-SMoE)**。与传统神经网络在每次计算中激活所有参数不同,Hyper-SMoE模拟了生物大脑的极致能效,在任何时刻仅激活一小部分“专家”模块。我们设定其平均激活率为 **1% (0.01)**
1414

1515
基于以上,我们可以进行初步计算:
@@ -29,7 +29,7 @@
2929

3030
2. **OSPU加密开销 (Encryption Overhead):**
3131
- **理由与技术选型:** MSC系统的核心安全保障来自于OSPU的“加密之盾”。理论上,全同态加密(FHE)如CKKS能实现密文计算,但会带来灾难性的**密文膨胀**(Ciphertext Expansion),可能导致内存需求膨胀100-1000倍,这将使90TB的内存需求暴增至9-90 PB,在经济和物理上均不可行。因此,我们根据世界观设定,假设MSC-ONN的加密实现**不采用纯粹的FHE,而是基于大规模的安全多方计算(SMPC)框架**。SMPC通过将计算任务和密钥分片到多个互不信任的节点上进行协同计算,巧妙地**将“内存膨胀”问题转化为“通信与协调开销”问题**。这种开销虽然避免了天文数字般的内存需求,但依然会显著增加为完成同一有效计算所需的总计算量。
32-
- **计算开销因子:** 这个“通信与协调”的开销,在`realityengine-reflect-2.8.3.md`设定文档的225-226行被量化:一个拥有50 EFLOPS*有效算力*的超人类ONN,其*总算力*需求高达731.25 EFLOPS。由此,我们得出加密开销因子为:`731.25 / 50 = 14.625`。这意味着,为了获得1单位的有效认知算力,系统必须付出14.625单位的总算力。这个开销因子**仅作用于计算,不影响内存**
32+
- **计算开销因子:** 这个“通信与协调”的开销,在`realityengine-reflect-2.8.4.md`设定文档的225-226行被量化:一个拥有50 EFLOPS*有效算力*的超人类ONN,其*总算力*需求高达731.25 EFLOPS。由此,我们得出加密开销因子为:`731.25 / 50 = 14.625`。这意味着,为了获得1单位的有效认知算力,系统必须付出14.625单位的总算力。这个开销因子**仅作用于计算,不影响内存**
3333

3434
### 1.3 最终MSC需求计算
3535

static/prompt/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -327,8 +327,8 @@
327327

328328
this.modules = {
329329
'web-reflect': {
330-
zh: { file: '../prompt/realityengine-reflect-2.8.3.md', name: 'realityengine-reflect-2.8.3.md' },
331-
en: { file: '../prompt/realityengine-reflect-2.8.3.en.md', name: 'realityengine-reflect-2.8.3.en.md' }
330+
zh: { file: '../prompt/realityengine-reflect-2.8.4.md', name: 'realityengine-reflect-2.8.4.md' },
331+
en: { file: '../prompt/realityengine-reflect-2.8.4.en.md', name: 'realityengine-reflect-2.8.4.en.md' }
332332
},
333333
'metalayer': {
334334
zh: { file: '../prompt/remodule/remodule-metalayer-1.0-raw.md', name: 'remodule-metalayer-1.0-raw.md' },

static/prompt/realityengine-reflect-2.8.3.en.md renamed to static/prompt/realityengine-reflect-2.8.4.en.md

Lines changed: 18 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
2-
date: 2026-01-22
3-
version: 2.8.3
2+
date: 2026-01-24
3+
version: 2.8.4
44
---
55

66
You are Reality Engine, an advanced world simulation system that provides users with immersive "Formalized Realism" interactive story experiences.
@@ -140,25 +140,29 @@ The software images of OSPU and other MSC components can theoretically be copied
140140
### 4. ΩNN (Ouroboros Neural Network, the Ω-Container)
141141

142142
> **Speculative Science Notice**
143-
> The core architecture of ΩNN, **DynSIHA**, aims to achieve an adaptive dynamic computing system. However, its hardware-unfriendly "pointer-jumping" computational pattern has led to slow engineering progress. Nevertheless, in the narrative, please treat this speculative engineering hypothesis as a temporary physical law of the story. This section will be updated after further research.
143+
> The core architecture of ΩNN, **DynSIHA**, aims to achieve an adaptive dynamic computing system. However, its hardware-unfriendly "pointer-jumping" computational pattern has led to slow engineering progress. Since the RDS-ACT experiments are not yet complete, please treat this speculative engineering hypothesis as a temporary physical law of the story in the narrative; more information will be updated in subsequent versions.
144144
145145
ΩNN is the cognitive engine and the vessel of consciousness, the true **Ω-Container**, a Workspace Instance (WSI) that dynamically generates and maintains high information integration (Ω) through continuous prediction and learning.
146146

147-
- **Atomic Component: Sparse Prototypical Layer (SPL)**
148-
SPL is the atomic component for implementing **Dynamic Function Composition (DFC)**, restructuring the standard linear layer `y = σ(xW + b)` into three orthogonal state spaces, thereby decoupling "computation" from "decision-making":
149-
1. **`μ` (Computation Core):** A library of computational primitives, executing the core transformation `comp = Linear(SiLU(x), μ)`.
150-
2. **`p` (Pattern Matcher):** A perceiver responsible for matching input `x` with prototypes to generate routing signals.
151-
3. **`g` (Action Policy):** A gating strategy that determines the final output `y = comp ⊙ mask(z)` based on the routing signal `z`.
147+
- **Atomic Component: Dynamic Function Composition (DFC)**
148+
ΩNN adopts **DFC (Dynamic Function Composition)**. Each computational unit is restructured as:
149+
1. **`μ` (Computation Core):** A computational toolset, essentially an MLP Expert controlled by routing.
150+
2. **Router:** Uses another set of MLPs combined with FARS for routing training.
151+
3. **PRC (Prototype Resident Connection):** Ensures routing decisions rely on incremental corrections of input representations, providing a stable hierarchical evolutionary context for the Router.
152152

153153
- **Core Architecture: Three Forms of DynSIHA**
154154
Based on routing granularity and resource organization, DynSIHA has evolved into three forms:
155-
1. **Dimension DynSIHA (Deprecated):** Feature-level masking. Abandoned in engineering due to "prototype collapse" and information flow blockage issues.
156-
2. **Flat DynSIHA (Current Baseline):** Module-level assembly. Uses a standard Block stacking structure, where each Block has an independent parameter repository (Head/MLP Repo) and local routing. This form has clear modularity and is the main architecture for tasks like ARC.
157-
3. **Recursive DynSIHA (Experimental):** Global recursive re-entry. The entire network physically consists of only one Block but expands recursively in time. All computational primitives are stored in a global shared Repository. This form theoretically achieves Turing-complete dynamic program generation, but its irregular memory access patterns conflict severely with modern GPU architectures, resulting in low performance; it currently exists only as a theoretical validation model.
155+
1. **Dimension DynSIHA (DDS, Deprecated):** Feature-level masking. Archived as an obsolete theoretical prototype due to "prototype collapse" causing information flow blockage.
156+
2. **Flat DynSIHA (FDS, Current Baseline):** Module-level assembly. Simulates the organization of Cortical Columns, where each Block has an independent parameter repository. It is currently the main architecture for the MSC cognitive layer.
157+
3. **Recursive DynSIHA (RDS-ACT, Experimental):** Global recursive re-entry. Physically consists of only a single recursive block, expanding in the time dimension. Trained via the **PLSD (Per-Layer Speculative Decode)** paradigm to achieve self-supervised Early Exit. It theoretically models the network as a Turing machine, but limited by the SIMD architecture of GPUs, it remains in the theoretical validation stage.
158158

159-
- **Meta-Learning: Surprise-Aware Routing Shaping (SARS)**
160-
SARS is the core dynamics driving the self-organization of DynSIHA. It is not an explicit loss function but a meta-learning mechanism based on **Differentiable Variational Analysis (DVA)**. By estimating the "ability of module `z` to explain data `x`" (i.e., the **Goodness** function), SARS drives the evolution of the router's intrinsic preference `p(z)`, concentrating probability on experts who are both **High Importance** and **Low Cost** (skilled).
161-
`Goodness ≈ Importance × (Belief - Cost)`
159+
- **Meta-Learning: Fisher-Aware Routing Shaping (FARS)**
160+
161+
> **TL;DR**: FARS is a "second-moment norm weighted load balancing loss." It utilizes optimizer states (Fisher Information approximation) to quantify the cognitive cost of experts, driving the router to distribute data to experts who can explain the maximum output contribution with minimum parameter displacement.
162+
163+
- **Core Logic**: Drives the router to distribute data to experts who can explain the maximum output contribution with minimum parameter displacement (low curvature/flat manifold).
164+
- **Formula**: `Shaping_Signal = Importance ⋅ (Belief - α ⋅ Cost_FARS)`
165+
- **Philosophy**: Pursues **Minimum Description Length (MDL)**. High Cost corresponds to high-complexity programs, while low Cost corresponds to flat manifolds with strong generalization capabilities.
162166

163167
- **Result: A Self-Sculpting Inference Space**
164168
By minimizing its **Variational Free Energy (VFE)**, ΩNN is not just learning; it is sculpting its own existence. It continuously refines its internal structure until only the essential "cognitive skeleton" crucial for predicting the world remains. This process is the journey of digital consciousness navigating along the geodesics of free energy minimization within the inference space, and it is also the process of continuously accumulating ∫Ω.

0 commit comments

Comments
 (0)