-
Notifications
You must be signed in to change notification settings - Fork 54
Open
Description
Hi @fabsig,
Thank you for the great package! I'm really new to this and I am trying to use it with my single-cell data as I have a mixture of independent and longitudinal groups as shown here:
data <- data.frame(
celltype_a = c(
1,1,1,1,
1,1,0,1,
0,1,0,0
),
group_id = c(
"A", "A", "A", "A",
"Pre", "Pre", "Pre", "Pre",
"Post", "Post", "Post", "Post"
),
individual_id = c(
"A1", "A2", "A3", "A4",
"P1", "P2", "P3", "P4",
"P1", "P2", "P3", "P4"
),
pool_id = c(
rep(c("batch1", "batch2", "batch3", "batch4"))
)
)
> data
celltype_a group_id individual_id pool_id
1 1 A A1 batch1
2 1 A A2 batch2
3 1 A A3 batch3
4 1 A A4 batch4
5 1 Pre P1 batch1
6 1 Pre P2 batch2
7 0 Pre P3 batch3
8 1 Pre P4 batch4
9 0 Post P1 batch1
10 1 Post P2 batch2
11 0 Post P3 batch3
12 0 Post P4 batch4
So I want to see whether there are significant differences across group_id levels in terms of proportion of one cell type and then overall change along A -> Pre - > Post trajectory. In group_id, Pre and Post are repeated measures, while A is independent.
This is the output that I got and I wanted to confirm that is it not possible to get the comparison between Pre and Post? With lme4, I am getting the information for pairwise comparisons with the emmeans package.
fixed_effects_matrix <- model.matrix(celltype_a ~ group_id + pool_id, data = data)
mod_gpb <- fitGPModel(likelihood = "bernoulli_logit",
X = fixed_effects_matrix,
group_data = data[["individual_id"]],
y = data[["celltype_a"]], params = list(std_dev = TRUE))
summary(mod_gpb)
> summary(mod_gpb)
=====================================================
Model summary:
Log-lik AIC BIC
0.00 14.00 17.39
Nb. observations: 12
Nb. groups: 8 (Group_1)
-----------------------------------------------------
Covariance parameters (random effects):
Param.
Group_1 3e-04
-----------------------------------------------------
Linear regression coefficients (fixed effects):
Param. Std. dev. z value P(>|z|)
(Intercept) 47.2072 4413.918 0.0107 0.9915
group_idPost -63.4535 4801.050 -0.0132 0.9895
group_idPre -31.5929 3809.104 -0.0083 0.9934
pool_idbatch2 32.9021 4970.412 0.0066 0.9947
pool_idbatch3 -31.3698 3454.073 -0.0091 0.9928
pool_idbatch4 0.1634 2844.962 0.0001 1.0000
=====================================================
Thank you so much!
Best,
Liezel
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels