-
Notifications
You must be signed in to change notification settings - Fork 92
Open
Description
keraspp/ex6_2_ae_conv_mnist_mc.py
Line 29 in 4090fcc
| z = Conv2D(1, (7, 7))(x) |
리포지토리 코드와 책에 따르면 인코딩 모델의 마지막 레이어는 7x7 사이즈를 갖도록 설정되었는데요,
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_12 (InputLayer) (None, 28, 28, 1) 0
_________________________________________________________________
cnn1 (Conv2D) (None, 26, 26, 4) 40
_________________________________________________________________
max_pooling1 (MaxPooling2D) (None, 13, 13, 4) 0
_________________________________________________________________
cnn3 (Conv2D) (None, 11, 11, 8) 296
_________________________________________________________________
max_pooling2 (MaxPooling2D) (None, 6, 6, 8) 0 # <--- 이 부분
_________________________________________________________________
final_cnn (Conv2D) (None, 1, 1, 1) 289
=================================================================
Total params: 625
Trainable params: 625
Non-trainable params: 0
_________________________________________________________________
max_pooling2 레이어의 출력값이 6x6 인데 CNN 7x7 을 사용할 수 있나요?
위 summary() 결과를 얻기 위해 사용한 모델 코드는 아래와 같습니다.
input_layer = Input(shape=self.input_shape)
x = Conv2D(4, (3, 3), name='cnn1')(input_layer)
x = MaxPooling2D((2, 2), padding='same', name='max_pooling1')(x)
x = Conv2D(8, (3, 3), name='cnn3')(x)
x = MaxPooling2D((2, 2), padding='same', name='max_pooling2')(x)
output_layer = Conv2D(1, (6, 6), name='final_cnn')(x)또한 7x7 사이즈의 CNN 을 사용했을 때, 나오는 에러는 아래와 같습니다.
ValueError: Negative dimension size caused by subtracting 7 from 6 for 'final_cnn_4/convolution' (op: 'Conv2D') with input shapes: [?,6,6,8], [7,7,8,1].
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels