-
Notifications
You must be signed in to change notification settings - Fork 103
Description
🐛 Bug
To Reproduce
Steps to reproduce the behavior:
1.from sklift.datasets import fetch_x5
1.dataset = fetch_x5()
1.
Expected behavior
Environment
- scikit-uplift version (e.g., 0.1.2):
- scikit-learn version (e.g., 0.22.2):
- Python version (e.g., 3.7):
- OS (e.g., Linux):
- Any other relevant information:
Additional context
ValueError Traceback (most recent call last)
Cell In[7], line 1
----> 1 dataset = fetch_x5()
2 dataset.data.keys()
File ~/mambaforge/envs/main/lib/python3.11/site-packages/sklift/datasets/datasets.py:333, in fetch_x5(data_home, dest_subdir, download_if_missing)
327 csv_purchases_path = _get_data(data_home=data_home, url=x5_metadata['url_purchases'], dest_subdir=dest_subdir,
328 dest_filename=file_purchases,
329 download_if_missing=download_if_missing,
330 desc=x5_metadata['desc_purchases'])
332 if _get_file_hash(csv_purchases_path) != x5_metadata['hash_purchases']:
--> 333 raise ValueError(f"The {file_purchases} file is broken, please clean the directory "
334 f"with the clean_data_dir() function, and run the function again")
336 purchases = pd.read_csv(csv_purchases_path)
337 purchases_features = list(purchases.columns)
ValueError: The purchases.csv.gz file is broken, please clean the directory with the clean_data_dir() function, and run the function again