Skip to content

Propagate_information_filter_LAI lacks inflation #6

@NPounder

Description

@NPounder

Propagate_information_filter_LAI isn't using the Q_matrix and I think it should be.

def propagate_information_filter_LAI(x_analysis, P_analysis,
P_analysis_inverse,
M_matrix, Q_matrix):
x_forecast = M_matrix.dot(x_analysis)
x_prior, c_prior, c_inv_prior = tip_prior()
n_pixels = len(x_analysis)/7
x0 = np.array([x_prior for i in xrange(n_pixels)]).flatten()
x0[6::7] = x_forecast[6::7] # Update LAI
print "LAI:", -2*np.log(x_forecast[6::7])
lai_post_cov = P_analysis_inverse.diagonal()
c_inv_prior_mat = []
for n in xrange(n_pixels):
c_inv_prior[6,6] = lai_post_cov[n]
c_inv_prior_mat.append(c_inv_prior)
P_forecast_inverse=block_diag(c_inv_prior_mat, dtype=np.float32)
return x0, None, P_forecast_inverse

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions