@@ -14,18 +14,21 @@ using namespace ::tests;
1414class rms_gpu_test : public ::testing::TestWithParam<cldnn::format> {};
1515
1616template <typename T>
17- void rms_ref (const memory::ptr input, const memory::ptr gamma, memory::ptr output, float epsilon) {
17+ void rms_ref (const memory::ptr input, const memory::ptr gamma, memory::ptr output, float epsilon, bool has_gamma = true ) {
1818 auto input_layout = input->get_layout ();
19- auto gamma_layout = gamma->get_layout ();
2019
2120 uint32_t batch_size = input_layout.batch ();
2221 uint32_t feature_size = input_layout.feature ();
2322 uint32_t y_size = input_layout.spatial (1 );
2423 uint32_t x_size = input_layout.spatial (0 );
2524
2625 cldnn::mem_lock<T> src (input, get_test_stream ());
27- cldnn::mem_lock<T> weight (gamma, get_test_stream ());
2826 cldnn::mem_lock<T> dst (output, get_test_stream ());
27+
28+ std::unique_ptr<cldnn::mem_lock<T>> weight;
29+ if (has_gamma && gamma) {
30+ weight = std::make_unique<cldnn::mem_lock<T>>(gamma, get_test_stream ());
31+ }
2932
3033 for (uint32_t b = 0 ; b < batch_size; ++b) {
3134 for (uint32_t f = 0 ; f < feature_size; ++f) {
@@ -44,12 +47,18 @@ void rms_ref(const memory::ptr input, const memory::ptr gamma, memory::ptr outpu
4447 for (uint32_t y = 0 ; y < y_size; ++y) {
4548 for (uint32_t x = 0 ; x < x_size; ++x) {
4649 auto tensor_src = tensor (batch (b), feature (f), spatial (x, y, 0 , 0 ));
47- auto tensor_weight = tensor (batch (0 ), feature (0 ), spatial (x, y, 0 , 0 ));
4850 auto tensor_dst = tensor (batch (b), feature (f), spatial (x, y, 0 , 0 ));
4951 size_t src_offset = input_layout.get_linear_offset (tensor_src);
50- size_t weight_offset = input_layout.get_linear_offset (tensor_weight);
5152 size_t dst_offset = input_layout.get_linear_offset (tensor_dst);
52- float result = rms * static_cast <float >(src[src_offset]) * static_cast <float >(weight[weight_offset]);
53+
54+ float gamma_val = 1 .0f ;
55+ if (has_gamma && weight) {
56+ auto tensor_weight = tensor (batch (0 ), feature (0 ), spatial (x, y, 0 , 0 ));
57+ size_t weight_offset = input_layout.get_linear_offset (tensor_weight);
58+ gamma_val = static_cast <float >((*weight)[weight_offset]);
59+ }
60+
61+ float result = rms * static_cast <float >(src[src_offset]) * gamma_val;
5362 dst[dst_offset] = static_cast <T>(result);
5463 }
5564 }
@@ -418,3 +427,133 @@ TEST(rms_gpu_test, rms_test_bfyx_opt_padding) {
418427 ASSERT_NEAR (output_ptr[i], output_ref_ptr[i], 1e-3 ) << " index=" << i;
419428 }
420429}
430+
431+ TEST (rms_gpu_test, rms_test_without_gamma_bfyx_ref) {
432+ auto & engine = get_test_engine ();
433+
434+ auto input = engine.allocate_memory ({ov::PartialShape{1 , 2 , 6 }, data_types::f32 , format::bfyx});
435+ auto gamma = engine.allocate_memory ({ov::PartialShape{1 , 6 }, data_types::f32 , format::bfyx});
436+ auto output_ref = engine.allocate_memory ({ov::PartialShape{1 , 2 , 6 }, data_types::f32 , format::bfyx});
437+
438+ set_values (input, {
439+ 0 .001839f , -0 .003815f , 0 .000961f , 0 .002930f , -0 .003998f , -0 .008057f ,
440+ 0 .006744f , -0 .000004f , 0 .004303f , -0 .002380f , 0 .000072f , 0 .001404f
441+ });
442+ set_values (gamma, {
443+ 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f
444+ });
445+
446+ rms_ref<float >(input, gamma, output_ref, 1e-5f , false );
447+
448+ topology topology;
449+ topology.add (input_layout (" input" , input->get_layout ()));
450+ topology.add (input_layout (" gamma" , gamma->get_layout ()));
451+ topology.add (rms (" rms" , input_info (" input" ), input_info (" gamma" ), 1e-5f , false ));
452+
453+ network network (engine, topology, get_test_default_config (engine));
454+
455+ network.set_input_data (" input" , input);
456+ network.set_input_data (" gamma" , gamma);
457+
458+ auto outputs = network.execute ();
459+ ASSERT_EQ (outputs.size (), size_t (1 ));
460+ ASSERT_EQ (outputs.begin ()->first , " rms" );
461+
462+ auto output = outputs.begin ()->second .get_memory ();
463+ cldnn::mem_lock<float > output_ptr (output, get_test_stream ());
464+ cldnn::mem_lock<float > output_ref_ptr (output_ref, get_test_stream ());
465+
466+ for (unsigned int i = 0 ; i < output_ref->count (); ++i) {
467+ EXPECT_NEAR (output_ptr[i], output_ref_ptr[i], 1e-3 );
468+ }
469+ }
470+
471+ TEST (rms_gpu_test, rms_test_without_gamma_bfyx_opt) {
472+ auto & engine = get_test_engine ();
473+
474+ auto input = engine.allocate_memory ({ov::PartialShape{1 , 2 , 16 }, data_types::f32 , format::bfyx});
475+ auto gamma = engine.allocate_memory ({ov::PartialShape{1 , 16 }, data_types::f32 , format::bfyx});
476+ auto output_ref = engine.allocate_memory ({ov::PartialShape{1 , 2 , 16 }, data_types::f32 , format::bfyx});
477+
478+ set_values (input, {
479+ 0 .001839f , -0 .003815f , 0 .000961f , 0 .002930f , -0 .003998f , -0 .008057f , -0 .005402f , -0 .002945f ,
480+ 0 .006744f , -0 .000004f , 0 .004303f , -0 .002380f , 0 .000072f , 0 .001404f , 0 .000568f , 0 .002579f ,
481+ 0 .003098f , -0 .006989f , -0 .000244f , 0 .010193f , 0 .002899f , -0 .005798f , -0 .026978f , 0 .008789f ,
482+ 0 .002258f , 0 .006500f , 0 .003159f , -0 .012329f , 0 .026245f , -0 .001839f , 0 .000259f , 0 .002670f
483+ });
484+ set_values (gamma, {
485+ 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f ,
486+ 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f , 1 .0f
487+ });
488+
489+ rms_ref<float >(input, gamma, output_ref, 1e-5f , false );
490+
491+ topology topology;
492+ topology.add (input_layout (" input" , input->get_layout ()));
493+ topology.add (input_layout (" gamma" , gamma->get_layout ()));
494+ topology.add (rms (" rms" , input_info (" input" ), input_info (" gamma" ), 1e-5f , false ));
495+
496+ network network (engine, topology, get_test_default_config (engine));
497+
498+ network.set_input_data (" input" , input);
499+ network.set_input_data (" gamma" , gamma);
500+
501+ auto outputs = network.execute ();
502+ ASSERT_EQ (outputs.size (), size_t (1 ));
503+ ASSERT_EQ (outputs.begin ()->first , " rms" );
504+
505+ auto output = outputs.begin ()->second .get_memory ();
506+ cldnn::mem_lock<float > output_ptr (output, get_test_stream ());
507+ cldnn::mem_lock<float > output_ref_ptr (output_ref, get_test_stream ());
508+
509+ for (unsigned int i = 0 ; i < output_ref->count (); ++i) {
510+ EXPECT_NEAR (output_ptr[i], output_ref_ptr[i], 1e-3 );
511+ }
512+ }
513+
514+ TEST (rms_gpu_test, rms_test_without_gamma_dyn) {
515+ auto & engine = get_test_engine ();
516+
517+ auto input_layout_dynamic = layout{ov::PartialShape{ov::Dimension::dynamic (), ov::Dimension::dynamic (), 4096 },
518+ data_types::f32 , format::bfyx};
519+ auto input = engine.allocate_memory ({ov::PartialShape{2 , 1 , 4096 }, data_types::f32 , format::bfyx});
520+ auto gamma = engine.allocate_memory ({ov::PartialShape{1 , 1 , 4096 }, data_types::f32 , format::bfyx});
521+ auto output_ref = engine.allocate_memory ({ov::PartialShape{2 , 1 , 4096 }, data_types::f32 , format::bfyx});
522+
523+ tests::set_random_values<float >(input, true , 8 , 100 );
524+ // Set gamma to all 1.0 for has_gamma=false case
525+ std::vector<float > gamma_data (4096 , 1 .0f );
526+ set_values (gamma, gamma_data);
527+
528+ rms_ref<float >(input, gamma, output_ref, 1e-5f , false );
529+
530+ topology topology;
531+ topology.add (input_layout (" input" , input_layout_dynamic));
532+ topology.add (input_layout (" gamma" , gamma->get_layout ()));
533+ topology.add (rms (" rms" , input_info (" input" ), input_info (" gamma" ), 1e-5f , false ));
534+
535+ ExecutionConfig config = get_test_default_config (engine);
536+ config.set_property (ov::intel_gpu::allow_new_shape_infer (true ));
537+
538+ network network (engine, topology, config);
539+
540+ network.set_input_data (" input" , input);
541+ network.set_input_data (" gamma" , gamma);
542+
543+ auto inst = network.get_primitive (" rms" );
544+ auto impl = inst->get_impl ();
545+ ASSERT_TRUE (impl != nullptr );
546+ ASSERT_TRUE (impl->is_dynamic ());
547+
548+ auto outputs = network.execute ();
549+ ASSERT_EQ (outputs.size (), size_t (1 ));
550+ ASSERT_EQ (outputs.begin ()->first , " rms" );
551+
552+ auto output = outputs.begin ()->second .get_memory ();
553+ cldnn::mem_lock<float > output_ptr (output, get_test_stream ());
554+ cldnn::mem_lock<float > output_ref_ptr (output_ref, get_test_stream ());
555+
556+ for (unsigned int i = 0 ; i < output_ref->count (); ++i) {
557+ EXPECT_NEAR (output_ptr[i], output_ref_ptr[i], 1e-3 );
558+ }
559+ }
0 commit comments