Skip to content

How to visualize the trends representation after selecting a single seasonality #23

@hanlaoshi

Description

@hanlaoshi

This is the relevant code I wrote myself, but I can't get the effect shown in figure 4 of the paper.

import numpy as np
import seaborn as sns
from cuml.manifold import TSNE
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("ticks")
##Learned representations from CoST
dataset_path = 'xxxx'
read_data = pd.read_csv(dataset_path+'representations.csv')
##Top 160 are trends representation
trends = np.array(read_data.iloc[:,1:161])
##Last 160 are seasons representation
seasons = np.array(read_data.iloc[:,161:])
##Perform T-SNE on the trends with a fixed season
trend_tsne = TSNE(n_components=2).fit_transform(trends)
seasonal_tsne = TSNE(n_components=2).fit_transform(seasons)
fig, axs = plt.subplots(2, 1, figsize=(8, 12))
##After fixing a certain 160-dimensional seasonal item, draw the two trend item cluster pictures
for i in range(2):
sns.scatterplot(x=trend_tsne[:, 0], y=trend_tsne[:, 1], hue=seasons[:, i+1], ax=axs[0], palette=['yellow', 'purple'])
axs[0].set_title('Fixed Seasonal Item {}'.format(i+1))
axs[0].set_xlabel('TSNE Dimension 1')
axs[0].set_ylabel('TSNE Dimension 2')

##After fixing a certain trend item in the first 160 dimensions, draw the clustering pictures of the three seasonal items
for i in range(3):
sns.scatterplot(x=seasonal_tsne[:, 0], y=seasonal_tsne[:, 1], hue=trends[:, i+1], ax=axs[1], palette=['yellow', 'blue', 'purple'])
axs[1].set_title('Fixed Trend Item {}'.format(i+1))
axs[1].set_xlabel('TSNE Dimension 1')
axs[1].set_ylabel('TSNE Dimension 2')

plt.tight_layout()
plt.show()

Any help will be appreciated.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions