|
| 1 | +# Derivative of \(\frac{d}{dx}\arcsin{x}\) by the first principle |
| 2 | + |
| 3 | +Start by using the limit definition: |
| 4 | + |
| 5 | +\[ |
| 6 | +\frac{d}{dx} \arcsin{x} = |
| 7 | +\lim\_{h \to 0} \frac{\arcsin(x+h) - \arcsin{x}}{h} |
| 8 | +\] |
| 9 | + |
| 10 | +Derive the identity for \(\arcsin{x}-\arcsin{y}\): |
| 11 | + |
| 12 | +\[ |
| 13 | +\sin(\alpha-\beta)=\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta} |
| 14 | +\\ |
| 15 | +\arcsin(\sin(\alpha-\beta))=\arcsin(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta}) |
| 16 | +\\ |
| 17 | +\alpha-\beta=\arcsin(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta}) |
| 18 | +\] |
| 19 | + |
| 20 | +By substitution: |
| 21 | + |
| 22 | +\[ |
| 23 | +\alpha=\arcsin{x} \implies \sin{\alpha}=x \quad |
| 24 | +-\pi/2\leq\alpha\leq\pi/2 \quad |
| 25 | +\text{and} \quad -1 \leq x \leq 1 |
| 26 | +\\ |
| 27 | +\beta=\arcsin{y} \implies \sin{\beta}=y \quad |
| 28 | +-\pi/2\leq\beta\leq\pi/2 \quad |
| 29 | +\text{and} \quad -1 \leq y \leq 1 |
| 30 | +\\ |
| 31 | +\text{Bounds on } \alpha \text{ result in choice of the positive square root.} |
| 32 | +\\ |
| 33 | +\cos{\alpha} = \sqrt{1 - \sin^2{\alpha}} = \sqrt{1 - x^2} |
| 34 | +\\ |
| 35 | +\text{Bounds on } \beta \text{ result in choice of the positive square root.} |
| 36 | +\\ |
| 37 | +\cos{\beta} = \sqrt{1 - sin^2{\beta}} = \sqrt{1 - y^2} |
| 38 | +\] |
| 39 | + |
| 40 | +Therefore: |
| 41 | + |
| 42 | +\[ |
| 43 | +\arcsin{x} - \arcsin{y} = \arcsin(x\sqrt{1 - y^2} - y\sqrt{1 - x^2}) |
| 44 | +\] |
| 45 | + |
| 46 | +Back to the limit and apply the derived identity: |
| 47 | + |
| 48 | +\[ |
| 49 | +\frac{d}{dx} \arcsin{x} = |
| 50 | +\lim_{h \to 0} \frac{\arcsin(x+h) - \arcsin{x}}{h} = |
| 51 | +\\ |
| 52 | +\lim_{h \to 0} \frac{\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2})}{h} |
| 53 | +\] |
| 54 | + |
| 55 | +Apply substitution to get rid of the function in the numerator. |
| 56 | + |
| 57 | +\[ |
| 58 | +\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2}) = t |
| 59 | +\\ |
| 60 | +\sin(\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2})) = \sin{t} |
| 61 | +\\ |
| 62 | +(x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2} = \sin{t} |
| 63 | +\] |
| 64 | + |
| 65 | +Solve for h: |
| 66 | + |
| 67 | +\[ |
| 68 | +(x+h)\sqrt{1 - x^2} - \sin{t} = x\sqrt{1 - (x+h)^2} |
| 69 | +\\ |
| 70 | +[(x+h)\sqrt{1 - x^2} - \sin{t}]^2 = [x\sqrt{1 - (x+h)^2}]^2 |
| 71 | +\\ |
| 72 | +(x+h)^2\lvert1 - x^2\rvert - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} = x^2\lvert1 - (x+h)^2\rvert |
| 73 | +\] |
| 74 | + |
| 75 | +_(I am possibly wrong here. This is another substitution and I might not be able to rely on restrictions of x and y.)_ Because of restrictions \(-1 \leq x \leq 1\) and \(-1 \leq y \leq 1\) in identity \(\arcsin{x} - \arcsin{y} = \arcsin(x\sqrt{1-y^2} - y\sqrt{1-x^2})\) we know that the two expressions \(1-x^2 > 0\) and \(1 - y^2 > 0\) are positive. Therefore we can use the positive definition of the absolute value. |
| 76 | + |
| 77 | +Therefore: |
| 78 | + |
| 79 | +\[ |
| 80 | +(x+h)^2(1 - x^2) - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} = x^2(1 - (x+h)^2) |
| 81 | +\\ |
| 82 | +(x+h)^2(1 - x^2) - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} = x^2 - x^2(x+h)^2 |
| 83 | +\\ |
| 84 | +(x+h)^2(1 - x^2) + x^2(x+h)^2 - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} - x^2 = 0 |
| 85 | +\\ |
| 86 | +(x+h)^2(1 - x^2 + x^2) - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} - x^2 = 0 |
| 87 | +\\ |
| 88 | +(x+h)^2 - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} - x^2 = 0 |
| 89 | +\\ |
| 90 | +[1](x+h)^2 - [2\sqrt{1 - x^2}\sin{t}](x+h) + [\sin^2{t} - x^2] = 0 |
| 91 | +\] |
| 92 | + |
| 93 | +We notice that it is a quadratic equation, where: |
| 94 | + |
| 95 | +\[ |
| 96 | +a = 1 \\ |
| 97 | +b = -2\sqrt{1 - x^2}\sin{t} \\ |
| 98 | +c = \sin^2{t} - x^2 \\ |
| 99 | +\] |
| 100 | + |
| 101 | +Solve for \((x + h)\) using quadratic formula \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): |
| 102 | + |
| 103 | +\[ |
| 104 | +(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{[2\sqrt{1 - x^2}\sin{t}]^2 - 4[\sin^2{t} - x^2]}}{2} |
| 105 | +\\ |
| 106 | +(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4(1 - x^2)\sin^2{t} - 4\sin^2{t} + 4x^2}}{2} |
| 107 | +\\ |
| 108 | +(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4\sin^2{t} - 4x^2sin^2{t} - 4\sin^2{t} + 4x^2}}{2} |
| 109 | +\\ |
| 110 | +(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4x^2 - 4x^2sin^2{t}}}{2} |
| 111 | +\\ |
| 112 | +(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4x^2(1 - sin^2{t})}}{2} |
| 113 | +\\ |
| 114 | +(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm 2\sqrt{x^2}\sqrt{1 - sin^2{t}}}{2} |
| 115 | +\\ |
| 116 | +(x+h) = \sqrt{1 - x^2}\sin{t} \pm \sqrt{x^2}\sqrt{1 - sin^2{t}} |
| 117 | +\\ |
| 118 | +(x+h) = \sqrt{1 - x^2}\sin{t} + \lvert{x}\rvert(\pm\sqrt{1 - sin^2{t}}) |
| 119 | +\\ |
| 120 | +h = \sqrt{1 - x^2}\sin{t} + \lvert{x}\rvert(\pm\sqrt{1 - sin^2{t}}) - x |
| 121 | +\] |
| 122 | + |
| 123 | +Here we notice that the square root is a \(\cos{t}\): |
| 124 | + |
| 125 | +\[ |
| 126 | +\cos{t}=\pm\sqrt{1 - sin^2{t}} |
| 127 | +\] |
| 128 | + |
| 129 | +_(I might be wrong here. I don't know how to handle the absolute value of x.)._ And in the context of the limit and substitution: |
| 130 | + |
| 131 | +\[\text{The variables we solve for are } \mathbf{t} \text{ and } \mathbf{h} \text{. Therefore the variable } \mathbf{x} \text{ is treated as a constant.}\] |
| 132 | + |
| 133 | +Since the absolute value of a constant is always positive value, we proceed as follows: |
| 134 | + |
| 135 | +\[ |
| 136 | +h = \sqrt{1 - x^2}\sin{t} + x\cos{t} - x |
| 137 | +\\ |
| 138 | +h \to 0 \implies t \to 0 |
| 139 | +\\ |
| 140 | +\sqrt{1 - x^2}\sin{t} + x\cos{t} - x = 0 |
| 141 | +\\ |
| 142 | +0 + x - x = 0 |
| 143 | +\\ |
| 144 | +0 = 0 |
| 145 | +\] |
| 146 | + |
| 147 | +Therefore, we can apply the following substitution to the limit: |
| 148 | + |
| 149 | +\[ |
| 150 | +\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2}) = t |
| 151 | +\\ |
| 152 | +h = \sqrt{1 - x^2}\sin{t} + x\cos{t} - x |
| 153 | +\\ |
| 154 | +h \to 0 \implies t \to 0 |
| 155 | +\] |
| 156 | + |
| 157 | +Back to the limit and apply the substitution: |
| 158 | + |
| 159 | +\[ |
| 160 | +\frac{d}{dx} \arcsin{x} = |
| 161 | +\lim_{h \to 0} \frac{\arcsin(x+h) - \arcsin{x}}{h} = |
| 162 | +\\ |
| 163 | +\lim_{h \to 0} \frac{\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2})}{h} = |
| 164 | +\\ |
| 165 | +\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin{t} + x\cos{t} - x} |
| 166 | +\] |
| 167 | + |
| 168 | +Here we notice that: |
| 169 | + |
| 170 | +\[[x\cos{t}] \rightarrow x \text{ as } t \to 0 \] |
| 171 | + |
| 172 | +Therefore: |
| 173 | + |
| 174 | +\[ |
| 175 | +\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin{t} + x\cos{t} - x} = |
| 176 | +\\ |
| 177 | +\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin(t) + x - x} |
| 178 | +\\ |
| 179 | +\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin(t)} |
| 180 | +\] |
| 181 | + |
| 182 | +By the common limit and by the limit law: |
| 183 | + |
| 184 | +\[ |
| 185 | +\lim_{t \to 0} \frac{\sin{t}}{t} = 1 |
| 186 | +\\ |
| 187 | +[\lim_{t \to 0} \frac{\sin{t}}{t}]^{-1} = [1]^{-1} |
| 188 | +\\ |
| 189 | +\lim_{t \to 0} [\frac{\sin{t}}{t}]^{-1} = [1]^{-1} |
| 190 | +\\ |
| 191 | +\lim_{t \to 0} \frac{t}{\sin{t}} = 1 |
| 192 | +\] |
| 193 | + |
| 194 | +Hence, we conclude: |
| 195 | + |
| 196 | +\[ |
| 197 | +\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin(t)} = \frac{1}{\sqrt{1 - x^2}} |
| 198 | +\] |
0 commit comments