Skip to content

Commit b930d5f

Browse files
author
Agustinus Kristiadi
committed
Fix #61: remove entropy term on InfoGAN as it is a constant
1 parent c790d2c commit b930d5f

File tree

2 files changed

+2
-4
lines changed

2 files changed

+2
-4
lines changed

GAN/infogan/infogan_pytorch.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -137,8 +137,7 @@ def sample_c(size):
137137
Q_c_given_x = Q(G_sample)
138138

139139
crossent_loss = torch.mean(-torch.sum(c * torch.log(Q_c_given_x + 1e-8), dim=1))
140-
ent_loss = torch.mean(-torch.sum(c * torch.log(c + 1e-8), dim=1))
141-
mi_loss = crossent_loss + ent_loss
140+
mi_loss = crossent_loss
142141

143142
mi_loss.backward()
144143
Q_solver.step()

GAN/infogan/infogan_tensorflow.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -101,8 +101,7 @@ def plot(samples):
101101
G_loss = -tf.reduce_mean(tf.log(D_fake + 1e-8))
102102

103103
cross_ent = tf.reduce_mean(-tf.reduce_sum(tf.log(Q_c_given_x + 1e-8) * c, 1))
104-
ent = tf.reduce_mean(-tf.reduce_sum(tf.log(c + 1e-8) * c, 1))
105-
Q_loss = cross_ent + ent
104+
Q_loss = cross_ent
106105

107106
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
108107
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)

0 commit comments

Comments
 (0)