-
Notifications
You must be signed in to change notification settings - Fork 65
Description
I have tried with my current installation and here the error
C:\punctuation-restoration\src>python inference.py --pretrained-model=roberta-large --weight-path=roberta-large-en.pt --language=en --in-file=data/test_en.txt --out-file=data/test_en_out.txt
C:\Python399\lib\site-packages\torchaudio\backend\utils.py:62: UserWarning: No audio backend is available.
warnings.warn("No audio backend is available.")
loading file vocab.json from cache at C:\Users\King/.cache\huggingface\hub\models--roberta-large\snapshots\5069d8a2a32a7df4c69ef9b56348be04152a2341\vocab.json
loading file merges.txt from cache at C:\Users\King/.cache\huggingface\hub\models--roberta-large\snapshots\5069d8a2a32a7df4c69ef9b56348be04152a2341\merges.txt
loading file added_tokens.json from cache at None
loading file special_tokens_map.json from cache at None
loading file tokenizer_config.json from cache at None
loading configuration file config.json from cache at C:\Users\King/.cache\huggingface\hub\models--roberta-large\snapshots\5069d8a2a32a7df4c69ef9b56348be04152a2341\config.json
Model config RobertaConfig {
"_name_or_path": "roberta-large",
"architectures": [
"RobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"classifier_dropout": null,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.22.1",
"type_vocab_size": 1,
"use_cache": true,
"vocab_size": 50265
}
loading configuration file config.json from cache at C:\Users\King/.cache\huggingface\hub\models--roberta-large\snapshots\5069d8a2a32a7df4c69ef9b56348be04152a2341\config.json
Model config RobertaConfig {
"architectures": [
"RobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"classifier_dropout": null,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.22.1",
"type_vocab_size": 1,
"use_cache": true,
"vocab_size": 50265
}
loading weights file pytorch_model.bin from cache at C:\Users\King/.cache\huggingface\hub\models--roberta-large\snapshots\5069d8a2a32a7df4c69ef9b56348be04152a2341\pytorch_model.bin
Some weights of the model checkpoint at roberta-large were not used when initializing RobertaModel: ['lm_head.dense.weight', 'lm_head.layer_norm.weight', 'lm_head.bias', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.decoder.weight']
- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
All the weights of RobertaModel were initialized from the model checkpoint at roberta-large.
If your task is similar to the task the model of the checkpoint was trained on, you can already use RobertaModel for predictions without further training.
Traceback (most recent call last):
File "C:\punctuation-restoration\src\inference.py", line 105, in
inference()
File "C:\punctuation-restoration\src\inference.py", line 41, in inference
deep_punctuation.load_state_dict(torch.load(model_save_path))
File "C:\Python399\lib\site-packages\torch\nn\modules\module.py", line 1604, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for DeepPunctuation:
Missing key(s) in state_dict: "bert_layer.embeddings.position_ids".
C:\punctuation-restoration\src>