Skip to content

VisionVerse is a versatile tool that integrates image captioning, pre-trained image classification, and text-to-image generation.

License

Notifications You must be signed in to change notification settings

777Denoiser/VisionVerse-Neural-Net-Helio-Optics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VisionVerse: Neural-Net Helio-Optics

Overview

VisionVerse: Neural-Net Helio-Optics is a multi-modal vision platform engineered for processing visual information in demanding cyber environments. Integrating robust image captioning, image classification, and text-to-image synthesis capabilities, this project delivers a consolidated toolkit for professionals operating within advanced computing landscapes.

Table of Contents

  1. Introduction
  2. Key Features
  3. Architecture
  4. Implementation Details
  5. Setup and Installation
  6. Usage Instructions
  7. Datasets
  8. Evaluation Metrics
  9. Extensibility and Future Directions
  10. Contributing
  11. License
  12. Acknowledgements

1. Introduction

VisionVerse: Neural Optics is tailored to provide efficient computer vision functionalities critical for complex digital environments. The integration of image captioning, classification, and synthesis mechanisms allows for detailed analysis and manipulation of visual data. This platform offers a cohesive environment for developers and researchers requiring precision and scalability.

2. Key Features

  • Caption Subsystem: Generates detailed captions for visual data using a CNN-RNN architecture, automatically converting complex imagery into actionable text descriptions.
  • Classification Array: Deploys CNN-based models to rapidly classify images into predefined categories, essential for automated data organization and indexing.
  • Image Synthesis Engine: Constructs images from text prompts, leveraging the combined power of CLIP and SIREN to create visual content with semantic grounding.
  • Unified CLI: Offers a command-line interface (CLI) for direct access and configuration of all VisionVerse functions.
  • Jupyter Notebook Integration: Provides Jupyter notebook environments for iterative development, testing, and real-time data analysis.
  • Modular Design: Employs a modular architecture that enables streamlined upgrades, precise customization, and comprehensive system enhancements.

3. Architecture

VisionVerse: Neural Optics uses a modular architecture.

Caption Subsystem

  • Description: Analyzes images and produces detailed, textual descriptions for each.
  • Components:
    • Encoder (CNN):
      • Employs a pre-trained CNN (e.g., ResNet50 as defined by the CLASSIFICATION_ARCH parameter in config.py) to extract critical visual features.
      • Implementation details: src/captioning/model.py within the EncoderCNN class.
      • Code Snippet:
        class EncoderCNN(nn.Module):
            def __init__(self, embed_size):
                super(EncoderCNN, self).__init__()
                resnet = models.resnet50(pretrained=True)
                for param in resnet.parameters():
                    param.requires_grad_(False)
        
    • Decoder (RNN):
      • Utilizes a recurrent neural network (RNN) to generate captions based on encoded visual data.
      • Code Reference: src/captioning/model.py, DecoderRNN class.
      • Code Sample:
        class DecoderRNN(nn.Module):
            def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
                super(DecoderRNN, self).__init__()
                self.embed = nn.Embedding(vocab_size, embed_size)
                self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
        
    • Data Loader:
      • Manages the loading and preprocessing of image-caption pairs.
      • Implementation: src/utils/data_loader.py, ImageCaptionDataset class.
      • Code Reference:
        class ImageCaptionDataset(Dataset):
            def __init__(self, root_dir, captions_file, transform=None):
                self.root_dir = root_dir
                self.transform = transform
                self.captions = self.load_captions(captions_file)
                self.img_paths = list(self.captions.keys())
        

Classification Array

  • Description: Classifies images into defined categories, providing robust automated indexing.
  • Components:
    • CNN Model:
      • Employs a CNN architecture to extract and classify image features (architecture adjustable via config.py).
      • Defined: src/classification/model.py in the CNNModel class.
      • Code Sample:
        class CNNModel(nn.Module):
            def __init__(self, arch='alexnet', hidden_units=512, num_classes=102):
                super(CNNModel, self).__init__()
                if arch == 'alexnet':
                    self.features = models.alexnet(pretrained=True).features
        
    • Data Handler:
      • Loading and preprocessing from designated sources, typically directories organized by class (handled by torchvision.datasets.ImageFolder).
    • Training Module:
      • Enables training and fine-tuning of the CNN model.
      • Code Reference: src/classification/train.py.

Synthesis Engine

  • Description: Generates images from text prompts, facilitating targeted content creation.
  • Components:
    • CLIP Interface:
      • Leverages OpenAI's CLIP model to determine similarity between generated images and text, which is critical for guided synthesis.
    • SIREN (Sine Representation Network):
      • Employs a SIREN to parameterize the image generation process.
      • Code Reference: src/generation/utils.py, SIREN class.
      • Snippet:
        class SIREN(nn.Module):
            def __init__(self, dim_in, dim_hidden, dim_out, num_layers, w0_initial, w0=30.):
                super().__init__()
                layers = []
        
    • Image Generator:
      • Integrates the CLIP model and SIREN to generate images.
      • Implementation specifics: src/generation/generator.py, ImageGenerator class.

4. Implementation Details

Data Flow

  1. Caption Subsystem:
    • Input image processed by EncoderCNN generates a feature vector.
    • This feature vector is fed into the DecoderRNN, which constructs a caption.
  2. Classification Array:
    • The CNNModel processes an image and outputs a class prediction.
  3. Synthesis Engine:
    • A text prompt is tokenized by CLIP.
    • The SIREN module generates an image from the text prompt.
    • Gradients are calculated and applied for optimized image synthesis.

Model Specifications

  • EncoderCNN (src/captioning/model.py): Encodes images in the Caption Subsystem.
  • DecoderRNN (src/captioning/model.py): Generates captions from the encoded image data.
  • CNNModel (src/classification/model.py): Performs image classification in the Classification Array.
  • SIREN (src/generation/utils.py): Sine Representation Network utilized in the Image Synthesis Engine.
  • ImageGenerator (src/generation/generator.py): Orchestrates the image generation process by combining CLIP and SIREN.

Training Regimens

  1. Caption Subsystem:
    • Training utilizes src/captioning/train.py.
    • Data is processed in batches using the get_loader function, with data source specifics from config.py.
    • Example configuration:
      train_loader = get_loader(
          root_folder='data/images',
          annotation_file='data/captions.txt',
          transform=transform,
          batch_size=CAPTION_BATCH_SIZE
      )
      
  2. Classification Array:
    • train_model, located in src/classification/train.py, manages the training of a configured CNN model.
    • Datasets are structured in directories:
      image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
      dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4) for x in ['train', 'valid']}
      

5. Setup and Installation

System Prerequisites

  • Python 3.9+
  • PyTorch 1.10+ (GPU recommended)
  • Torchvision 0.11+
  • CUDA 11.0+ (for GPU utilization)
  • PIL (Pillow)
  • Transformers
  • NumPy
  • Matplotlib
  • Tqdm

Installation Procedures

  1. Clone the repository:

    git clone https://github.com/777Denoiser/VisionCraft.git
    cd VisionCraft
    
  2. Set up a virtual environment:

    python -m venv venv
    source venv/bin/activate  # Linux and macOS
    venv\Scripts\activate  # Windows
    
  3. Install dependencies:

    pip install -r requirements.txt
    

6. Usage Instructions

Command-Line Interface (CLI)

VisionVerse is equipped with a CLI for interaction and setup.

  • CLI Access:

    python main.py --task <task> --input <input> --model <model_path> [optional arguments]
    
    • --task: Task to execute ('caption', 'classify', 'generate').
    • --input: Path to the input image or text prompt.
    • --model: Path to the model checkpoint.
  • Usage Examples:

    • Caption Subsystem:

      python main.py --task caption --input data/test_image.jpg --model checkpoints/caption_model.pth --vocab data/vocab.json
      
    • Classification Array:

      python main.py --task classify --input data/test_flower.jpg --model checkpoints/classification_model.pth --categories data/flower_labels.json
      
    • Synthesis Engine:

      python main.py --task generate --input "A neon-lit cityscape at dawn"
      

Jupyter Notebooks

VisionVerse includes Jupyter notebooks for enhanced workflow.

  • Available Notebooks:

    • VisionVerse_Exploration.ipynb: Guide to module interaction and exploration.
    • VisionVerse_Training.ipynb: Details system training.
  • Running the Notebooks:

    1. Install Jupyter:

      pip install jupyter
      
    2. Start the Jupyter Notebook:

      jupyter notebook
      
    3. Open the desired notebook.

7. Datasets

VisionVerse interfaces with diverse datasets.

  • Image Captioning:
    • Custom datasets created to fit specific needs.
      • Utilize ImageCaptionDataset in src/utils/data_loader.py to structure the datasets.
  • Image Classification:
    • Datasets organized in structured directories.
  • Text-to-Image Generation:
    • Leverages pre-trained models.

8. Evaluation Metrics

Performance in VisionVerse is measured with.

  • Image Captioning:
    • BLEU
    • ROUGE
    • CIDEr
  • Image Classification:
    • Accuracy
    • Precision
    • Recall
    • F1-Score
  • Text-to-Image Generation:
    • Qualitative Analysis
    • CLIP Similarity Score

9. Extensibility and Future Directions

VisionVerse is designed for ongoing development and improvement.

  • Integrate object detection and pose estimation systems.
  • Multimodal support, such as video and audio.
  • Investigate Transformers and GANs.
  • Web interfaces.
  • Cloud deployments.
  • Use in Military HUD Systems (Main Reason for the Name)

10. Contributing

Contributions are encouraged; to contribute:

  1. Fork.
  2. Branch.
  3. Implement.
  4. Pull Request.

11. License

This project is under the MIT License.

12. Acknowledgements

I acknowledge the following.

  • OpenAI (for the CLIP model)

Releases

No releases published

Packages

No packages published