Skip to content

🏑 Predict house prices using machine learning (Linear, Random Forest) with full EDA, preprocessing and model evaluation.

Notifications You must be signed in to change notification settings

Abdelrahman-Atef-Elsayed/house-price-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🏑 House Price Prediction

A regression project to predict house prices using various machine learning models like Linear Regression, Random Forest, and XGBoost based on the Kaggle House Prices dataset.


πŸ“‚ Project Structure

house-price-prediction/
β”‚
β”œβ”€β”€ data/           # contains train.csv, test.csv
β”œβ”€β”€ notebooks/      # Jupyter notebook for training and EDA
β”œβ”€β”€ models/         # saved model (.pkl), train_columns
β”œβ”€β”€ images/         # visualizations
β”œβ”€β”€ main.py         # script to load model and predict
β”œβ”€β”€ requirements.txt
└── README.md

πŸš€ Models Used

Model MAE RMSE RΒ²
Linear Regression 24,351 34,012 0.81
Random Forest 18,921 28,345 0.89

βœ… Best performing model: Random Forest


πŸ› οΈ How to Run

1. Install dependencies

pip install -r requirements.txt

2. Run prediction script

python main.py

Make sure you have best_model.pkl and train_columns.pkl inside the models/ folder.


πŸ“¦ Requirements

  • pandas
  • numpy
  • matplotlib
  • seaborn
  • scikit-learn

🧠 Future Work

  • Feature engineering
  • Model tuning (GridSearchCV)
  • Streamlit web app for user input

About

🏑 Predict house prices using machine learning (Linear, Random Forest) with full EDA, preprocessing and model evaluation.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published