A regression project to predict house prices using various machine learning models like Linear Regression, Random Forest, and XGBoost based on the Kaggle House Prices dataset.
house-price-prediction/
β
βββ data/ # contains train.csv, test.csv
βββ notebooks/ # Jupyter notebook for training and EDA
βββ models/ # saved model (.pkl), train_columns
βββ images/ # visualizations
βββ main.py # script to load model and predict
βββ requirements.txt
βββ README.md
| Model | MAE | RMSE | RΒ² |
|---|---|---|---|
| Linear Regression | 24,351 | 34,012 | 0.81 |
| Random Forest | 18,921 | 28,345 | 0.89 |
β Best performing model: Random Forest
pip install -r requirements.txtpython main.pyMake sure you have
best_model.pklandtrain_columns.pklinside themodels/folder.
- pandas
- numpy
- matplotlib
- seaborn
- scikit-learn
- Feature engineering
- Model tuning (GridSearchCV)
- Streamlit web app for user input