Skip to content

Description: ๐ŸŒฑ Smart Farm Yield Prediction Dashboard using PySpark, Streamlit, and Machine Learning for crop yield forecasting and interactive visual insights.

Notifications You must be signed in to change notification settings

Aditya-jaiswal07972/Spark-Smart-Farm-yield-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

5 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐ŸŒพ Smart Farming Crop Yield Prediction Dashboard

An interactive dashboard for analyzing and predicting crop yield using agricultural input data. Built with PySpark, Streamlit, Plotly, Pandas, and packaged with Unified Python Packaging (uv).


๐Ÿš€ Features

  • ๐Ÿ“ˆ Predict crop yield using Linear Regression and Random Forest
  • ๐Ÿงฎ Visualize actual vs. predicted yield and residuals
  • ๐Ÿ“Š Interactive charts, correlation heatmaps, and feature importance
  • ๐Ÿงฉ Dynamic filters and dropdowns for granular data exploration
  • ๐Ÿงผ Clean, responsive layout with a smooth UX using Streamlit

๐Ÿ“ท Screenshots

Actual vs Predicted
Actual vs Predicted
Nitrogen vs Yield
Nitrogen vs Yield

๐Ÿ—‚๏ธ Project Structure

smart-farm-predic/
โ”‚
โ”œโ”€โ”€ proj.py                  # Main Streamlit dashboard logic
โ”œโ”€โ”€ main.py                  # Optional entry point (can run proj.py)
โ”œโ”€โ”€ smart_farming_crop_yield_prediction.csv
โ”œโ”€โ”€ pyproject.toml           # Project metadata and dependencies (uv)
โ”œโ”€โ”€ uv.lock                  # Locked dependencies (auto-generated)
โ”œโ”€โ”€ .venv/                   # Virtual environment (optional)
โ”œโ”€โ”€ assets/                  # Images and visual assets
โ””โ”€โ”€ README.md

๐Ÿ› ๏ธ Getting Started

Make sure Python >=3.10 and uv are installed.

1. Clone the Repository

git clone https://github.com/Aditya-jaiswal07972/Spark-Smart-Farm-yield-prediction.git
cd smart-farm-predic

2. Install Dependencies with uv

Using a virtual environment:

uv venv
uv pip install

Or install globally:

uv pip install --system

3. Run the App

# Option 1: Directly run the Streamlit app
streamlit run proj.py

# Option 2: Use the CLI entry point
python main.py

๐Ÿ“ฆ Tech Stack

All dependencies are managed via pyproject.toml. Key packages:

  • streamlit โ€“ for building the interactive dashboard
  • pyspark โ€“ for data processing at scale
  • pandas, plotly-express, seaborn, matplotlib โ€“ for analysis and visualization

๐Ÿ‘จโ€๐ŸŒพ Author

Made with โค๏ธ by Aditya Jaiswal

๐Ÿ“„ License

Released under the MIT License. Feel free to fork, use, and contribute!

About

Description: ๐ŸŒฑ Smart Farm Yield Prediction Dashboard using PySpark, Streamlit, and Machine Learning for crop yield forecasting and interactive visual insights.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages