Skip to content

Advanced mathematical foundations: Category theory, LQG derivation, String/AdS-CFT connection

License

Notifications You must be signed in to change notification settings

AsesorErick/kaelion-formal

Repository files navigation

Kaelion Formal v2.1

Advanced Mathematical Foundations of the Kaelion Correspondence

DOI


Overview

This repository contains rigorous mathematical derivations connecting Kaelion to established theoretical physics frameworks.


Experimental Confirmation (January 2026)

The formal predictions in this repository have been experimentally verified with 136+ data points on IBM Quantum hardware:

Prediction Formal Module Experimental Result
alpha = -0.5 - lambda Formal 1-4 Error = 0 (5 Hamiltonians)
lambda = 0 for integrable Formal 2 (LQG) lambda = 0.245 at J=0
lambda = 1 for chaotic Formal 3 (String) lambda = 1.0 for Kicked Ising
Universality Formal 1 (Category) 5 Hamiltonian families

See: kaelion-experiments v3.4


Formal Modules

Module Topic Tests Key Result
Formal 1 Category Theory 6/6 Kaelion is initial in category Ent
Formal 2 LQG Explicit 6/6 alpha = -0.5 from spin networks
Formal 3 String Theory 6/6 alpha = -1.5 from AdS/CFT
Formal 4 Field Theory 6/6 lambda(x,t) as dynamical order parameter
Formal 5 Emergent Geometry 6/6 AdS2 emerges from RG flow

Total: 30/30 tests (100%)


Key Theorems

Theorem 1 (Categorical Uniqueness)

Kaelion is the initial object in the category of GSL-preserving interpolations.

Theorem 2 (LQG Derivation)

The coefficient alpha = -0.5 follows from spin network state counting with SU(2) gauge constraint.

Theorem 3 (Holographic Limit)

The coefficient alpha = -1.5 is universal for holographic CFTs via Cardy formula.

Theorem 4 (Dynamical lambda)

Lambda can be promoted to a dynamical field with action S[lambda] admitting domain wall solutions that interpolate between LQG (lambda=0) and holographic (lambda=1) phases.

Theorem 5 (Emergent AdS2 Geometry)

Imposing invariance of the effective metric under RG translations uniquely yields a hyperbolic metric equivalent to Euclidean AdS2. The AdS geometry is therefore an output of the information accessibility flow.

Corollary (Unification)

Kaelion alpha(lambda) = -0.5 - lambda is the unique linear interpolation connecting LQG and string theory entropy predictions, with geometry emerging from information dynamics.


The Big Picture

              KAELION UNIFICATION
          
    LQG (lambda=0)         String/CFT (lambda=1)
    --------------         --------------------
    Discrete               Continuous
    Spin networks          Strings/branes
    alpha = -0.5           alpha = -1.5
    Background indep.      Holographic
         |                      |
         |  alpha = -0.5 - lambda |
         +----------+------------+
                    |
               KAELION
          (Unique interpolation)
                    |
         +----------+----------+
         v                     v
    Formal 5              Experimental
    RG Flow               Verification
       |                   136+ pts
    Emergent              IBM Quantum
     AdS2                  p < 10^-10

Module Details

Formal 1: Category Theory

  • Defines category Ent of entropy functionals
  • Kaelion as morphism S_LQG -> S_CFT
  • 2-categorical structure with coherence
  • Universal property: Kaelion is initial

Formal 2: LQG Explicit

  • Spin network state counting
  • alpha = -0.5 from SU(2) Clebsch-Gordan
  • Barbero-Immirzi parameter role
  • Result: alpha_LQG = -1/2 is DERIVED, not fitted

Formal 3: String Theory

  • Strominger-Vafa microscopic counting
  • AdS/CFT correspondence
  • Cardy formula for CFT entropy
  • Result: alpha_CFT = -3/2 from holography

Formal 4: Field Theory of lambda

  • Lambda promoted to dynamical field lambda(x,t)
  • Double-well potential V(lambda) = mu^2 * lambda^2 * (1-lambda)^2
  • Domain wall solutions between phases
  • Result: lambda is an ORDER PARAMETER for quantum gravity

Formal 5: Emergent AdS2 Geometry

  • lambda(t) as information accessibility parameter
  • RG equation: d(lambda)/d(ln t) = -c * lambda * (1-lambda)
  • Emergent radial coordinate from lambda flow
  • Result: AdS2 is an OUTPUT of information dynamics

Repository Structure

kaelion-formal/
├── category_theory/
│   ├── formal1_category.py
│   └── Formal1_CategoryTheory.png
├── lqg_explicit/
│   ├── formal2_lqg.py
│   └── Formal2_LQG.png
├── string_connection/
│   ├── formal3_string.py
│   └── Formal3_String.png
├── field_theory/
│   ├── formal4_field.py
│   └── Formal4_FieldTheory.png
├── emergent_geometry/
│   ├── formal5_emergent_ads2.py
│   ├── Kaelion4_ToyModel_AdS2.pdf
│   ├── beta_flow.png
│   └── lambda_flow.png
├── LICENSE
└── README.md

Quick Start

git clone https://github.com/AsesorErick/kaelion-formal.git
cd kaelion-formal

python3 category_theory/formal1_category.py
python3 lqg_explicit/formal2_lqg.py
python3 string_connection/formal3_string.py
python3 field_theory/formal4_field.py
python3 emergent_geometry/formal5_emergent_ads2.py

Related Repositories

Repository Purpose DOI
kaelion Main theory (25 modules) 10.5281/zenodo.18344067
kaelion-experiments All experimental data (136+ points) 10.5281/zenodo.18354608
kaelion-derivation Theoretical derivations (Modules 26-38) 10.5281/zenodo.18345038
kaelion-formal (this) Formal verification (Formal 1-5) 10.5281/zenodo.18345110
kaelion-paper_v3 Paper and code 10.5281/zenodo.18355180
kaelion-flavor Flavor mixing predictions 10.5281/zenodo.18347004

Citation

@software{perez_kaelion_formal_2026,
  author = {Pérez Eugenio, Erick Francisco},
  title = {Kaelion Formal v2.1: Mathematical Foundations},
  year = {2026},
  publisher = {Zenodo},
  doi = {10.5281/zenodo.18345110}
}

License

MIT License


Author

Erick Francisco Pérez Eugenio
ORCID: 0009-0006-3228-4847

About

Advanced mathematical foundations: Category theory, LQG derivation, String/AdS-CFT connection

Resources

License

Stars

Watchers

Forks

Packages

No packages published