Skip to content

Automatic ensembles, obtained via algorithmic discovery pipeline, for phenotypes prediction tasks with microbiome data (e.g. metagenomics).

Notifications You must be signed in to change notification settings

CMG-GUTS/aensembles

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

aensembles

The module aensembles contains all essential code to reproduce the LAMPP benchmark results. Utility scripts to prepare the data to be compatible with aensembles and to launch validation, training or inference are located in the dedicated modules.

Recommended installation method

uv venv
source .venv/bin/activate
uv pip install -e .

aensembles were tested with Python 3.12.

Data preparation to align with aensembles convention

Locate the data for example under data/lampp-raw which will have the folders for each task ie. crc, dmnw, dmw, ghs, ibd, scz.

Run

python data_prep/prepare_lampp_data.py --input data/lampp-raw --output data/lampp-prepared

with this command prepared data will be located under data/lampp-prepared - and this location is used by default in the further scripts.

[Optional] cross-validation

Despite the fact that the ensembles proposed were already evaluated via nested cross-validation settings, they can be evaluated again via:

python validate/cv_ibd.py
python validate/cv_crc.py
python validate/cv_ghs.py
python validate/cv_scz.py
python validate/cv_dmw.py
python validate/cv_dmnw.py

Training and submission

Generate predictions for individual tasks:

python submit/run_ibd_submission.py
python submit/run_crc_submission.py
python submit/run_ghs_submission.py
python submit/run_scz_submission.py
python submit/run_dmw_submission.py
python submit/run_dmnw_submission.py

Predictions saved to lampp_submissions/{task}/predictions.csv.

Latest cross-validation results obtained with scripts in validate directory

Cross-validation performance metrics (mean±std) across all LAMPP benchmark tasks.

Metric CRC
inner-val-folds
CRC
outer-folds
DMNW
inner-val-folds
DMNW
outer-folds
DMW
inner-val-folds
DMW
outer-folds
GHS
inner-val-folds
GHS
outer-folds
IBD
inner-val-folds
IBD
outer-folds
SCZ
inner-val-folds
SCZ
outer-folds
AUC 0.8030±0.0298 0.8053±0.0303 0.9047±0.0145 0.9067±0.0146 0.9047±0.0145 0.9067±0.0146 0.9194±0.0068 0.9190±0.0069 0.9939±0.0058 0.9918±0.0056 0.8773±0.0533 0.8893±0.0832
PR-AUC 0.8244±0.0276 0.8258±0.0291 0.8473±0.0284 0.8475±0.0318 0.8473±0.0284 0.8475±0.0318 0.8393±0.0115 0.8390±0.0111 0.9966±0.0034 0.9945±0.0038 0.8942±0.0569 0.9149±0.0616
Accuracy 0.7187±0.0197 0.7233±0.0321 0.8405±0.0211 0.8487±0.0206 0.8405±0.0211 0.8487±0.0206 0.8544±0.0062 0.8440±0.0058 0.9844±0.0069 0.9873±0.0063 0.7772±0.0771 0.7857±0.1006
Balanced Acc 0.7191±0.0199 0.7240±0.0323 0.8415±0.0209 0.8487±0.0196 0.8415±0.0209 0.8487±0.0196 0.8131±0.0082 0.7981±0.0091 0.9769±0.0106 0.9837±0.0085 0.7735±0.0798 0.7814±0.1076
F1 Score 0.7132±0.0197 0.7103±0.0331 0.8182±0.0230 0.8261±0.0217 0.8182±0.0230 0.8261±0.0217 0.7510±0.0113 0.7301±0.0124 0.9894±0.0047 0.9913±0.0043 0.7976±0.0709 0.8141±0.0724
Precision 0.7388±0.0289 0.7577±0.0431 0.7914±0.0310 0.8060±0.0342 0.7914±0.0310 0.8060±0.0342 0.8066±0.0137 0.7950±0.0119 0.9861±0.0068 0.9914±0.0051 0.7773±0.0925 0.7994±0.1526
Recall 0.6907±0.0319 0.6696±0.0376 0.8479±0.0329 0.8487±0.0306 0.8479±0.0329 0.8487±0.0306 0.7028±0.0164 0.6755±0.0208 0.9928±0.0042 0.9913±0.0052 0.8327±0.1167 0.8583±0.1014
nMCC 0.7198±0.0198 0.7256±0.0327 0.8393±0.0209 0.8471±0.0200 0.8393±0.0209 0.8471±0.0200 0.8260±0.0075 0.8129±0.0073 0.9799±0.0089 0.9837±0.0081 0.7826±0.0775 0.7951±0.1004

Note that DMNW and DMW sets are the same, but tested independetly, as such this proves we obtained reproducable results. For those datasets, only the test set differs and used for the generalization ability evaluation - revealed in the LAMPP leaderboard.

ROC curves for each task and evaluation mode, showing individual fold performance and their mean.

Task inner-val-folds outer-folds
CRC
DMW
GHS
IBD
SCZ

About

Automatic ensembles, obtained via algorithmic discovery pipeline, for phenotypes prediction tasks with microbiome data (e.g. metagenomics).

Resources

Stars

Watchers

Forks

Languages