Skip to content

AI-powered phishing detection system with real-time email and URL analysis. Built for Microsoft Imagine Cup 2026 using Azure AI Services, ML models, and browser extension.

License

Notifications You must be signed in to change notification settings

Chetan-code-lrca/PhishGuard-AI-ImagineCup2026

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

PhishGuard-AI-ImagineCup2026

AI-powered phishing detection system with real-time email and URL analysis. Built for Microsoft Imagine Cup 2026 using Azure AI Services, ML models, and browser extension.

🎯 Project Overview

PhishGuard AI is an intelligent cybersecurity solution that detects and prevents phishing attacks through:

  • Real-time Email Analysis: Scans incoming emails for phishing indicators
  • URL Analysis: Evaluates links for malicious content
  • Machine Learning Models: Trained on phishing email datasets for accurate detection
  • Azure AI Integration: Leverages Azure Cognitive Services for advanced threat analysis
  • Browser Extension: Instant alerts and warnings for suspicious emails/URLs
  • Web Dashboard: Centralized monitoring and threat tracking

πŸ’» Tech Stack

  • Frontend: HTML5, CSS3, JavaScript (Web App + Browser Extension)
  • Backend: Node.js with Express.js, Python for data processing
  • Cloud: Microsoft Azure (Cognitive Services, App Service, Storage)
  • ML/AI: Python (scikit-learn, TensorFlow), Azure ML
  • Database: Azure SQL Database / MongoDB
  • APIs: Azure Text Analytics, Content Moderator, Anomaly Detector
  • DevOps: GitHub Actions, Docker (optional)

πŸ“Š Project Structure

PhishGuard-AI-ImagineCup2026/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ data_processing/          # Python ML pipeline
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ email_analyzer.py    # Email feature extraction
β”‚   β”‚   β”œβ”€β”€ url_analyzer.py      # URL analysis module
β”‚   β”‚   └── model_trainer.py     # Model training pipeline
β”‚   β”œβ”€β”€ backend/                  # Node.js backend
β”‚   β”‚   β”œβ”€β”€ server.js
β”‚   β”‚   β”œβ”€β”€ routes/
β”‚   β”‚   └── middleware/
β”‚   └── extension/                # Browser extension
β”‚       β”œβ”€β”€ manifest.json
β”‚       β”œβ”€β”€ popup.html
β”‚       └── content.js
β”œβ”€β”€ models/                        # Trained ML models
β”œβ”€β”€ app.js                         # Main application
β”œβ”€β”€ index.html                     # Web dashboard UI
β”œβ”€β”€ styles.css                     # UI styling
β”œβ”€β”€ requirements.txt               # Python dependencies
β”œβ”€β”€ package.json                   # Node.js dependencies (TODO)
β”œβ”€β”€ .env.example                   # Environment variables template
β”œβ”€β”€ .gitignore
β”œβ”€β”€ LICENSE
└── README.md

πŸš€ Getting Started

Prerequisites

  • Node.js 14+ and npm
  • Python 3.8+
  • Azure account with subscription
  • Git

Installation

  1. Clone the repository

    git clone https://github.com/Chetan-code-lrca/PhishGuard-AI-ImagineCup2026.git
    cd PhishGuard-AI-ImagineCup2026
  2. Set up environment variables

    cp .env.example .env
    # Edit .env with your Azure credentials and API keys
  3. Install Python dependencies

    pip install -r requirements.txt
  4. Install Node.js dependencies (TODO)

    npm install
  5. Run the application

    node app.js

    Visit http://localhost:3000

πŸ‘₯ Team Members & Roles

Name Role Responsibility
Chetan Team Lead Project coordination, Backend development
Srikanth ML Engineer Model training, Data processing pipeline
Nandhitha Frontend Developer UI/UX design, Web dashboard
Sreelaxmi Cloud Engineer Azure setup, API integration, DevOps

πŸ“‹ Milestones & Timeline

Phase 1: Foundation (Week 1-2)

  • Repository setup & team onboarding
  • Azure resources provisioning
  • Dataset collection & preprocessing
  • Environment configuration

Phase 2: Core Development (Week 3-4)

  • Email analyzer module
  • URL analyzer module
  • ML model training & evaluation
  • Backend API development

Phase 3: Frontend & Integration (Week 5-6)

  • Web dashboard UI
  • Browser extension development
  • Azure service integration
  • Real-time alert system

Phase 4: Testing & Deployment (Week 7-8)

  • Unit & integration testing
  • Security audits
  • Performance optimization
  • Azure deployment (App Service)
  • Final documentation

πŸ”‘ Key Features

βœ… Real-time Detection: Analyzes emails/URLs as they arrive βœ… ML-Powered: Trained models with 95%+ accuracy βœ… Azure Integration: Enterprise-grade cloud infrastructure βœ… User-Friendly: Simple dashboard and browser extension βœ… Scalable: Designed for enterprise deployment βœ… Privacy-Focused: Local analysis, encrypted data transmission

πŸ› οΈ Development Workflow

Creating Issues

  1. Go to the Issues tab
  2. Click New Issue
  3. Use templates: Bug, Feature, Enhancement
  4. Assign to team member & add labels

Making Pull Requests

  1. Create feature branch: git checkout -b feature/your-feature
  2. Commit changes: git commit -m "Feature: description"
  3. Push & create PR: git push origin feature/your-feature
  4. Request code review from team members
  5. Merge after approval

Code Standards

  • JavaScript: ESLint configuration (upcoming)
  • Python: PEP 8 compliance
  • Commit messages: Descriptive, past tense
  • Branch naming: feature/, bugfix/, docs/ prefixes

πŸ“š Resources

πŸ” Security Considerations

  • Never commit .env files with real credentials
  • Use Azure Key Vault for secrets management
  • Implement HTTPS for all communications
  • Validate & sanitize all user inputs
  • Regular security audits & updates
  • GDPR compliance for data processing

πŸ“„ License

MIT License - See LICENSE file for details

🀝 Contributing

Contributions welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request with description

πŸ“ž Support & Questions

For questions or issues:

  • Create a GitHub Issue
  • Contact: [Team Email] (TODO)
  • Discord: [Link] (TODO)

Last Updated: November 18, 2025 Status: In Development for Microsoft Imagine Cup 2026

About

AI-powered phishing detection system with real-time email and URL analysis. Built for Microsoft Imagine Cup 2026 using Azure AI Services, ML models, and browser extension.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published