This repository presents a radiodosiomics framework for personalized [¹⁷⁷Lu]Lu-PSMA-617 RLT in patients with metastatic castration-resistant prostate cancer (mCRPC). It includes feature selection and ML models using clinical biomarkers and radiomic and dosiomic (radiodosiomic) features extracted from pretreatment [⁶⁸Ga]Ga-PSMA-11 PET/CT, plus Swin UNETR model with SSL to predict Monte Carlo–based dose rate maps.
See radiodosiomics_ML.ipynb for the full pipeline including:
- Feature selection (RFE, Boruta, LASSO, Mutual Information, and Elastic Net)
- Model training and evaluation
- Integration of clinical, radiomic, and dosiomic features
Before pretraining and fine-tuning, data (PET and CT images) should be preprocessed:
python preprocess.py --in_dir=<Input-directory(PET and CT)> --out_dir=<Output-directory>Pre-Train Swin UNETR encoder on unlabeled data
python main.py --exp=<Experiment Name> --in_channels=2 --data_dir=<Data-Path> --json_list=<Json List Path> \
--lr=6e-6 --lrdecay --batch_size=<Batch Size> --num_steps=<Number of Steps>Fine-Tuning Swin UNETR on labeled data:
python main.py --exp=<Experiment Name> --data_dir=<Data-Path> --json_list=<Json List Path> --in_channels=2 --out_channels=1 \
--pretrained_model_name=<Pretrained Encoder Name> --batch_size=<Batch Size> --max_epochs=<Epochs> --use_ssl_pretrained \
--ssl_pretrained_path=<Pretrained Model Path> --use_checkpointEvaluating Swin UNETR
python test.py --pretrained_dir=<Pretrained Model Path> --data_dir=<Data-Path> --exp_name=<Experiment Name> \
--json_list=<Json List Path> --pretrained_model_name=<Pretrained Model Name> --saveInstall dependencies using:
pip install -r requirements.txtYazdani E, Neizehbaz A, Karamzade‐Ziarati N, Emami F, Vosoughi H, Asadi M, Mahmoudi A, Sadeghi M, Kheradpisheh SR, Geramifar P.
Transforming [177Lu] Lu‐PSMA‐617 treatment planning: Machine learning‐based radiodosiomics and swin UNETR using pretherapy PSMA positron emission tomography/computed tomography (PET/CT).
Medical Physics. 2025 Oct;52(10):e70030. https://doi.org/10.1002/mp.70030
Models Implantation and SSL Pipeline are based on MONAI and This repository.