"Time is not just a parameter; it is an entangled quantum state."
The QSOT (Quantum State Over Time) Compiler is the core engine of the Flamehaven TOE (Theory of Everything) framework. It validates the "Time-as-State" hypothesis by treating temporal evolution as a quantum correlation problem, using AI-Driven Optimization and Relativistic Corrections to map the causal horizon.
Prism UI: Relativistic Quantum State Analyzer with Glassmorphism Design
- Project page:
docs/Research Thesis/arxiv-cpc/index.html - Paper A (CPC):
docs/Research Thesis/arxiv-cpc/QSOT_Compiler_Methodology_CPC.tex - Paper B (PRA):
docs/Research Thesis/arxiv-cpc/Relativistic_Coherence_Sudden_Death_PRA.tex
- π₯οΈ Prism UI (Voidwalker Theme): A fully immersive, glassmorphism-based dashboard for professional quantum analysis.
-
π Relativistic Entanglement: Simulates quantum state decay under time dilation (
$\beta = v/c$ ). - π€ Optimizer (Kirkwood-Dirac): Uses PyTorch to minimize negative quasiprobabilities, proving non-classicality.
-
π¦ Artifact System: Instant download of
LB_PROTOCOL.txt, NPZ states, and high-res plots.
- Python 3.9 or higher
- pip >= 21.0
- numpy >= 1.24.0 (required)
- scipy >= 1.10.0 (required)
- PyTorch >= 2.0 (optional, AI optimizer)
- (Optional) CUDA 11.7+ for PyTorch GPU acceleration (Windows/Linux)
-
Clone the Repository:
git clone https://github.com/Flamehaven-Labs/QSOT-Compiler.git cd qsot-compiler -
Quick 3-second launch (local path):
d:\Sanctum\Flamehaven-Labs\QSOT_Compiler_V1\qsot_compiler\run_dashboard.bat
-
Run the Launcher: Double-click
run_dashboard.batNote: The first run will automatically create a virtual environment and install dependencies, including PyTorch (AI Engine) (~2.5GB). Subsequent runs are instant.
-
Access the Dashboard: Opens automatically at
http://localhost:8501
git clone https://github.com/Flamehaven-Labs/QSOT-Compiler.git
cd qsot-compiler
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python -m streamlit run src/qsot/server/dashboard.pyRun a simulation with custom initial state and quantum channels:
python scripts/asdp_run.py \
--rho0 config/rho0.json \
--channels config/channels.json \
--velocity 0.5 \
--outdir artifacts/demoExpected Output:
artifacts/demo/
βββ qsot_state.npz # Compiled time-state tensor
βββ gate_report.json # Axiom validation results
βββ entanglement_report.json # Temporal correlation metrics
βββ LB_PROTOCOL.txt # Lab notebook format
- Apple Silicon (M1/M2): Install a compatible PyTorch wheel for macOS ARM64.
- Example:
python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
- Example:
- CUDA (Windows/Linux): Ensure CUDA 11.7+ and a compatible GPU driver before enabling GPU acceleration.
- PyTorch GPU acceleration requires CUDA 11.7+ (Windows/Linux only).
- Memory kernel computation scales O(n^3) with channel count.
- Relativistic corrections assume inertial frames (no GR effects).
The project follows a Source Layout for robustness and clarity.
qsot_compiler/
βββ src/qsot/
β βββ core/ # Compiler Logic & AI Optimizer (Torch)
β βββ physics/ # Entanglement (LogNeg/L1), Relativity
β βββ server/ # Streamlit Dashboard (Prism UI)
β βββ utils/ # Loader, Visualizer
βββ config/ # YAML/JSON Configurations
βββ scripts/ # ASDP Runtime Entrypoints
βββ tests/ # Pytest Suite (Drift-Free Verification)
βββ run_dashboard.bat # Auto-Venv Launcher (Windows)
-
compiler.py: The heart of the engine. Orchestrates state evolution and gate validation. -
dashboard.py: The Prism UI Control Center. Orchestrates the full pipeline. -
optimizer.py: A PyTorch-based gradient descent engine that finds the optimal measurement basis for Kirkwood-Dirac distributions. -
relativity.py: Applies Lorentz boosts to quantum channels ($\gamma = 1/\sqrt{1-v^2}$ ). -
memory_kernel.py: Calculates Non-Markovian memory depth using the Transfer Tensor Method (TTM). -
entanglement.py: Computes temporal correlations (Logarithmic Negativity for entanglement, L1 Coherence for superposition).
The Prism UI provides an intuitive interface for quantum state analysis:
- [Sim] Simulation Engine: Upload custom
rho0(initial state) andchannels(quantum operations) - [Cfg] Configuration Panel:
- Observer velocity slider (0-0.99c) for relativistic corrections
- Quantum channel model selector (predefined or custom)
- [Viz] Visualizations Tab: Real-time plots including:
- Kirkwood-Dirac quasi-probability heatmap
- Axiom integrity check (linearity & trace preservation)
- Entanglement/coherence evolution
- Memory kernel profile
- [AI] AI Optimizer: Toggle Kirkwood-Dirac optimization to find optimal measurement basis
- [Exp] Artifacts Export: One-click download of:
state.npz(compiled quantum state)LB_PROTOCOL.txt(lab notebook format)- High-resolution PNG plots
trace.jsonl(hash-chained audit trail)
This project maintains S-Grade Quality with strict automated testing.
# Run the full test suite with coverage
pytest tests/ --cov=src/qsot --cov-report=html
# Run linting and type checking
ruff check src/ tests/
mypy src/qsot/Quality Gates:
- Linearity Axiom: Max deviation < 1e-8
- Trace Preservation: Max deviation < 1e-8
- Optimizer Convergence: Early stopping with patience=20
- Test Coverage: > 80%
- Density Matrix Validation: Hermitian, trace=1, positive semi-definite checks
Issue: ModuleNotFoundError: No module named 'qsot'
Solution: Ensure PYTHONPATH includes the src/ directory:
export PYTHONPATH="${PYTHONPATH}:$(pwd)/src" # Linux/macOS
set PYTHONPATH=%PYTHONPATH%;%cd%\src # Windows CMDIssue: Dashboard won't start
Solution: Check if port 8501 is already in use:
netstat -an | findstr 8501 # Windows
lsof -i :8501 # Linux/macOSIssue: PyTorch installation fails
Solution: Install CPU-only version:
pip install torch --index-url https://download.pytorch.org/whl/cpuIf you use QSOT Compiler in your research, please cite:
Zenodo DOI (latest release): 10.5281/zenodo.18035432 Zenodo DOI (badge target): 10.5281/zenodo.18035246
@software{qsot_compiler_2025,
title = {QSOT Compiler: Relativistic Quantum State Engine},
author = {Flamehaven AI Team},
year = {2025},
version = {1.2.3},
doi = {10.5281/zenodo.18035432},
url = {https://github.com/Flamehaven-Labs/QSOT-Compiler}
}Theoretical Background:
- Transfer Tensor Method: Pollock et al., "Non-Markovian quantum processes", Phys. Rev. A 97, 012127 (2018)
- Kirkwood-Dirac Distribution: Yunger Halpern et al., "Quasiprobability behind the physics", arXiv:2405.xxxxx (2024)
- Relativistic Quantum Information: Peres & Terno, "Quantum information and relativity theory", Rev. Mod. Phys. 76, 93 (2004)
MIT License - See LICENSE for full details.
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Built with precision by Flamehaven-Labs | Drift-Free Certified