Skip to content

โšก AiLab-workbench โ€” an all-in-one ๐Ÿง  AI & data science lab repository ๐Ÿš€ with Python implementations of path-finding algorithms (BFS, DFS, UCS) ๐Ÿงญ, data processing ๐Ÿ“Š, and algorithmic problem-solving ๐Ÿงฎ. Includes lab assignments ๐Ÿ“š, sample datasets ๐Ÿ—‚๏ธ, and step-by-step scripts ๐Ÿ“ for hands-on learning ๐Ÿ’ก.

License

Notifications You must be signed in to change notification settings

H0NEYP0T-466/AiLab-workbench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

10 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

AiLab-workbench

GitHub License
GitHub Stars
GitHub Forks
GitHub Issues
GitHub Pull Requests
Contributions Welcome

Last Commit
Commit Activity
Repo Size
Code Size

Top Language
Languages Count

Documentation
Open Source Love

๐Ÿ“– Description

AiLab-workbench is a comprehensive collection of AI and data science laboratory assignments implemented in Python. This repository contains practical implementations of fundamental algorithms including path-finding algorithms (BFS, DFS, UCS), data processing, machine learning concepts, and algorithmic problem-solving techniques. Perfect for students and practitioners looking to understand core AI concepts through hands-on coding exercises.

๐Ÿ”— Quick Links

๐Ÿ“‘ Table of Contents

โœจ Features

  • ๐Ÿงญ Smart Campus Path Finder - Implementation of BFS, DFS, and UCS algorithms for optimal path finding
  • ๐Ÿ“Š Data Analysis & Visualization - Practical examples using NumPy, Pandas, and Matplotlib
  • ๐Ÿงฎ Algorithm Implementations - Queue operations, heap structures, and graph traversal algorithms
  • ๐Ÿ“ˆ Performance Comparison - Detailed analysis and comparison of different algorithmic approaches
  • ๐Ÿ”„ Graph Operations - Comprehensive graph manipulation including add, remove, and modify operations
  • ๐Ÿ“ Well-Documented Code - Clear comments and explanations for educational purposes

๐Ÿš€ Installation

Prerequisites

Before you begin, ensure you have the following installed:

  • Python 3.7+ - Download Python
  • pip - Python package installer (usually comes with Python)

Setup Steps

  1. Clone the repository
git clone https://github.com/H0NEYP0T-466/AiLab-workbench.git
cd AiLab-workbench
  1. Install required dependencies
pip install numpy pandas matplotlib
  1. Verify installation
python --version
pip show numpy pandas matplotlib

โšก Usage

Running Lab Assignments

Each lab file can be executed independently. Here are some examples:

Smart Campus Path Finder (Lab 466 OEL)

python Fall-23-BSCS-466-OEL.py

This will run the campus path-finding system with interactive features including:

  • Add/remove campus locations
  • Find paths using BFS, DFS, and UCS
  • Compare algorithm performance
  • Visualize traversal history

Data Analysis Labs

# Run data processing lab
python Lab12.py

# Run pandas operations
python Lab13.py

# Run visualization lab
python LAB-Paper.py

Algorithm Implementation Labs

# Queue operations
python lab6.py

# Heap operations
python lab7.py

# NumPy operations
python Lab11.py

Example Code Snippet

from collections import deque

# Simple BFS implementation example
def bfs(graph, start):
    visited = set()
    queue = deque([start])
    
    while queue:
        node = queue.popleft()
        if node not in visited:
            visited.add(node)
            queue.extend(graph[node])
    
    return visited

๐Ÿ“‚ Folder Structure

AiLab-workbench/
โ”œโ”€โ”€ Fall-23-BSCS-466-OEL.py      # Smart Campus Path Finder (BFS, DFS, UCS)
โ”œโ”€โ”€ Fall-23-BSCS-628-OEL.py      # Advanced algorithm implementations
โ”œโ”€โ”€ LAB-Paper.py                  # Data visualization and plotting exercises
โ”œโ”€โ”€ Lab11.py                      # NumPy operations and arrays
โ”œโ”€โ”€ Lab12.py                      # NumPy advanced operations
โ”œโ”€โ”€ Lab12.1.py                    # Pandas and NumPy integration
โ”œโ”€โ”€ Lab13.py                      # Pandas data processing
โ”œโ”€โ”€ lab#3.py                      # Basic algorithm exercises
โ”œโ”€โ”€ lab#3(TASK#1).py             # Specific task implementations
โ”œโ”€โ”€ lab#4.py                      # Intermediate algorithms
โ”œโ”€โ”€ lab#5.py                      # Data structures
โ”œโ”€โ”€ lab#5_Task#2.py              # Advanced data structure tasks
โ”œโ”€โ”€ lab6.py                       # Queue implementations
โ”œโ”€โ”€ lab7.py                       # Heap and priority queue operations
โ”œโ”€โ”€ processed_sensor_data.csv    # Sample data file for exercises
โ”œโ”€โ”€ student_practice_data.csv    # Practice dataset
โ”œโ”€โ”€ traversal_history.txt        # Graph traversal logs
โ”œโ”€โ”€ README.md                     # This file
โ”œโ”€โ”€ LICENSE                       # MIT License
โ”œโ”€โ”€ CONTRIBUTING.md              # Contribution guidelines
โ”œโ”€โ”€ SECURITY.md                  # Security policy
โ”œโ”€โ”€ CODE_OF_CONDUCT.md          # Code of conduct
โ””โ”€โ”€ .github/                     # GitHub-specific files
    โ”œโ”€โ”€ ISSUE_TEMPLATE/          # Issue templates
    โ”‚   โ”œโ”€โ”€ bug_report.yml
    โ”‚   โ”œโ”€โ”€ feature_request.yml
    โ”‚   โ””โ”€โ”€ config.yml
    โ””โ”€โ”€ pull_request_template.md # PR template

๐Ÿ›  Tech Stack

Languages

Python

Frameworks & Libraries

NumPy Pandas Matplotlib

Development Tools

Git GitHub VS Code

๐Ÿ“ฆ Dependencies & Packages

This project uses Python's standard library along with essential data science packages.

Runtime Dependencies

Click to expand

NumPy

  • Fast numerical computing library for array operations and mathematical functions

Pandas

  • Powerful data manipulation and analysis library for structured data

Matplotlib

  • Comprehensive library for creating static, animated, and interactive visualizations

Standard Library Dependencies

This project also uses Python standard library modules (included with Python):

  • collections - Container datatypes (deque, defaultdict)
  • heapq - Heap queue algorithm (priority queue)
  • queue - Queue implementations
  • time - Time access and conversions
  • datetime - Date and time manipulation

Installation

Install all runtime dependencies with:

pip install numpy pandas matplotlib

Or install specific versions for compatibility:

pip install numpy>=1.20.0 pandas>=1.3.0 matplotlib>=3.4.0

๐Ÿค Contributing

We welcome contributions from the community! Please read our Contributing Guidelines before submitting pull requests.

Quick contribution steps:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

๐Ÿ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ›ก Security

For security concerns, please review our Security Policy and report vulnerabilities responsibly.

๐Ÿ“ Code of Conduct

This project adheres to the Contributor Covenant Code of Conduct. By participating, you are expected to uphold this code.


Made with โค๏ธ by H0NEYP0T-466

About

โšก AiLab-workbench โ€” an all-in-one ๐Ÿง  AI & data science lab repository ๐Ÿš€ with Python implementations of path-finding algorithms (BFS, DFS, UCS) ๐Ÿงญ, data processing ๐Ÿ“Š, and algorithmic problem-solving ๐Ÿงฎ. Includes lab assignments ๐Ÿ“š, sample datasets ๐Ÿ—‚๏ธ, and step-by-step scripts ๐Ÿ“ for hands-on learning ๐Ÿ’ก.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages