Skip to content

ImdataScientistSachin/Machine-Learning-Portfolio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

13 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿš€ Machine Learning & Deep Learning Portfolio

A Comprehensive Collection of Production-Ready ML/DL Implementations

Python TensorFlow scikit-learn License Maintained

๐Ÿ“ง Email โ€ข ๐Ÿ’ผ LinkedIn โ€ข ๐Ÿ™ GitHub


๐Ÿ“‹ Table of Contents


๐ŸŽฏ Overview

This repository showcases 82+ production-ready implementations spanning the entire spectrum of Machine Learning and Deep Learning. Each script is meticulously documented with comprehensive explanations, making it an ideal resource for learning, reference, and portfolio demonstration.

๐ŸŽ“ What Makes This Repository Special?

  • โœ… Self-Documented Code: Every script includes detailed comments explaining the "what" and "why"
  • โœ… Industry-Standard Practices: Follows best practices in model development, validation, and deployment
  • โœ… End-to-End Workflows: Complete pipelines from data preprocessing to model evaluation
  • โœ… Real-World Applications: Practical implementations solving actual business problems
  • โœ… Recruiter-Friendly: Clear structure and documentation designed for technical interviews

โœจ Key Highlights

๐Ÿ† Featured Projects

Project Technology Highlights
Age & Gender Detection EfficientNetB4, Transfer Learning Multi-task learning with TTA, 95%+ accuracy, GUI deployment
Traffic Sign Classification CNN, Data Augmentation 43-class classification, real-time prediction capability
Used Car Price Prediction Linear Regression, Feature Engineering VIF analysis, log transformation, 85%+ Rยฒ score
Transfer Learning Pipeline MobileNetV3, Fine-tuning Frozen layers, custom head, early stopping

๐ŸŽฏ Core Competencies Demonstrated

Deep Learning

  • ๐Ÿ”น Convolutional Neural Networks (CNNs)
  • ๐Ÿ”น Transfer Learning & Fine-tuning
  • ๐Ÿ”น Data Augmentation Strategies
  • ๐Ÿ”น Computer Vision Applications
  • ๐Ÿ”น Model Optimization & Callbacks
  • ๐Ÿ”น TensorBoard Visualization
  • ๐Ÿ”น Mixed Precision Training

Machine Learning

  • ๐Ÿ”น Supervised Learning (Regression/Classification)
  • ๐Ÿ”น Unsupervised Learning (Clustering)
  • ๐Ÿ”น Ensemble Methods (Bagging/Boosting)
  • ๐Ÿ”น Hyperparameter Tuning (GridSearchCV)
  • ๐Ÿ”น Feature Engineering & Selection
  • ๐Ÿ”น Model Selection & Validation
  • ๐Ÿ”น Statistical Analysis & VIF

๐Ÿง  Deep Learning Projects

๐Ÿ“‚ Repository: Deep Learning (30 Projects)

๐Ÿ–ผ๏ธ Computer Vision & Image Classification

Advanced Projects

Script Description Key Techniques
Age_Gender_Detection2.py Multi-task age & gender prediction EfficientNetB4, Mixed Precision, TTA, Calibration
ex_Traffic_sign_classification.py 43-class traffic sign classifier CNN, Heavy Augmentation, Batch Normalization
17__Transfer_Learning.py Horse vs Human classification MobileNetV3, Layer Freezing, Fine-tuning
18_Feature_Extraction.py Pre-trained feature extraction VGG16/ResNet, Custom Classifier Head

Core CNN Implementations

Script Description Dataset
12__cat_dog_Classification_Argumentation.py Binary classification with augmentation Cats & Dogs (2,000 images)
09_Flower_manual.py Multi-class flower classification Flowers (5 classes)
ex_Intel_Image_Classification.py Scene classification Intel Image (6 classes)
12_cifar10CNN.py Object recognition CIFAR-10 (10 classes)

Foundational Projects

  • 07_MNIST.py - Handwritten digit recognition
  • 11_Fashion_Mist_CNN.py - Fashion item classification
  • 08_Human_vs_Horse_dataset.py - Binary classification
  • 09__Augmentation.py - Data augmentation techniques

Model Deployment & Utilities

  • 20_Delpoy_openCV.py - Real-time OpenCV deployment
  • 10_Load_saved_model.py - Model persistence & loading
  • 02__TensorBoard.py - Training visualization
  • 15__PreTrain_model.py & 16__PreTrain_model_2.py - Pre-trained model usage
๐Ÿงฎ Neural Network Fundamentals
  • 0_DNN_Archietecture.py - Deep Neural Network architecture
  • 13_Perceptron_Intro.py - Perceptron from scratch
  • 14_multiClass_perceptron_ex1.py - Multi-class perceptron
  • 01_Binary_classification_p2.py - Binary classification basics
  • 6__multiclass_p-1.py & 6__multiclass_p-2.py - Multi-class classification
  • 5__multiple_reg_DL.py - Multiple regression with DL

๐Ÿค– Machine Learning Projects

๐Ÿ“‚ Repository: Machine Learning (52 Projects)

๐Ÿ“ˆ Regression Analysis

Advanced Regression

Script Description Techniques
Project_1_Predict_The_Price_of_Used_Car.py End-to-end price prediction VIF, Log Transform, Outlier Removal, Scaling
EX_polynomial_regression.py Non-linear relationship modeling Polynomial features, Degree selection
EX_Lasso_Ridge_Regulization.py Regularization techniques L1/L2 penalties, Cross-validation

Core Regression Implementations

  • Linear_Regression_Height_to_weight.py - Simple linear regression
  • Linear_Regression_Temp_Convertor.py - Temperature prediction
  • EX_Multiple_LINEAR_Regression_Pract_Session3.py - Multiple linear regression
  • 03_linear_Regression_Assumptions_Task.py - Assumption validation
  • EX_linear_Regression_Assumptions.py - Statistical testing
  • EX_model selection_Regression.py - Model comparison
  • EX_Support-Vector-Machine-R.py - SVM for regression
๐ŸŽฏ Classification Algorithms

Tree-Based Methods

Algorithm Scripts Features
Decision Trees EX_Decision_Tree_Classification.py Gini/Entropy, Pruning
Random Forest EX_RandomForest_Classification(Baagging).py Bagging, Feature Importance
Gradient Boosting EX_5__Gradient_Boosting_Classification.py Sequential learning, Weak learners

Distance-Based Methods

  • EX_9__K-NearestNeighbourClassification.py - KNN classifier
  • EX_9__K-NearestNeighbourRegression.py - KNN regressor
  • EX_6__Radius_Neighbors_Classification.py - Radius-based classification

Probabilistic & Kernel Methods

  • EX_10_Naive_Bays_Classification.py - Naive Bayes
  • EX_Support_Vector_Machine-classification.py - SVM with kernels
  • EX_Dec_Support_Vector_machine.py - Decision boundary visualization
  • Logistic-Regression_Ex2_Purchase.py - Binary logistic regression
  • Logistic-Regression_Ex3_Binary.py - Advanced logistic regression
  • EX_Logistic_Regression_stats_model.py - Statistical modeling
๐Ÿ” Clustering & Unsupervised Learning
Algorithm Script Key Features
K-Means EX_Unsupervised_K-MEANS.py Elbow method, Silhouette score
Hierarchical EX_Hierarchical_Clustering_Agglomerative.py Dendrogram, Linkage methods
DBSCAN EX_DBSCAN.py Density-based, Noise detection
Mean Shift EX_MeanShift.py Bandwidth selection
  • EX_K-MEANS_ELBOW.py - Optimal cluster selection
  • Assignment_1_Clustering_Iris.py - Iris clustering analysis
โš™๏ธ Model Optimization & Validation

Hyperparameter Tuning

  • EX_HyperParameter_Tuning_Part1.py - GridSearchCV basics
  • EX_HyperParameter_Tuning_Part2.py - Advanced tuning (RandomForest, SVC)

Model Selection & Evaluation

  • EX_ModelSelection_Classification.py - Classifier comparison
  • Model_Selection_Regression.py - Regressor comparison
  • EX_AUC_ROC.py, EX_AUC_ROC_2.py, EX_AUC_ROC_Part_3.py - ROC curve analysis
๐Ÿ”ง Feature Engineering
Category Script Techniques
Extraction EX_Feature Engineering_feature_extraction.py PCA, Kernel PCA, t-SNE
Selection EX_feature_selection.py Filter/Wrapper/Embedded methods
Preprocessing EX_data_PreProcessiing.py Scaling, Encoding, Imputation
๐ŸŽจ Specialized Applications
  • App_Recommendations_Org.py - Recommendation system
  • App_Recommendations_Temp.py - Recommendation system (variant)
  • Ex4_IceCream_UnitSalesPrediction_Modified.py - Sales forecasting

๐Ÿ› ๏ธ Technical Stack

Core Technologies

# Deep Learning
tensorflow >= 2.8.0
keras >= 2.8.0
opencv-python >= 4.5.0

# Machine Learning
scikit-learn >= 1.0.0
statsmodels >= 0.13.0

# Data Processing
numpy >= 1.21.0
pandas >= 1.3.0

# Visualization
matplotlib >= 3.4.0
seaborn >= 0.11.0

# Utilities
pillow >= 8.3.0
tkinter (built-in)

Advanced Techniques Implemented

  • Mixed Precision Training (FP16/FP32)
  • Test-Time Augmentation (TTA)
  • Learning Rate Scheduling (Cosine Annealing)
  • Early Stopping & Model Checkpointing
  • Variance Inflation Factor (VIF) Analysis
  • Cross-Validation (K-Fold, Stratified)
  • Ensemble Methods (Voting, Stacking)

๐Ÿ“Š Project Statistics

๐Ÿ“ Total Projects: 82
โ”œโ”€โ”€ ๐Ÿง  Deep Learning: 30 projects
โ”‚   โ”œโ”€โ”€ Computer Vision: 20
โ”‚   โ”œโ”€โ”€ Neural Networks: 8
โ”‚   โ””โ”€โ”€ Deployment: 2
โ”‚
โ””โ”€โ”€ ๐Ÿค– Machine Learning: 52 projects
    โ”œโ”€โ”€ Regression: 12
    โ”œโ”€โ”€ Classification: 18
    โ”œโ”€โ”€ Clustering: 6
    โ”œโ”€โ”€ Optimization: 5
    โ”œโ”€โ”€ Feature Engineering: 3
    โ””โ”€โ”€ Applications: 8

๐Ÿ“ Lines of Code: 15,000+
๐Ÿ“š Documentation: Comprehensive inline comments
๐ŸŽฏ Code Quality: Production-ready, self-documented

๐Ÿš€ Quick Start

Prerequisites

# Python 3.8 or higher
python --version

# Install dependencies
pip install tensorflow scikit-learn pandas numpy matplotlib seaborn opencv-python pillow

Running a Project

# Clone the repository
git clone https://github.com/ImdataScientistSachin/ML-DL-Portfolio.git
cd ML-DL-Portfolio

# Navigate to desired directory
cd "Deep Learning"
# or
cd "Machine Learning"

# Run any script
python Age_Gender_Detection2.py

Example: Age & Gender Detection

# Load the trained model
from tensorflow.keras.models import load_model
model = load_model('final_age_gender_model.keras')

# Predict on new image
age, gender, confidence = predict_age_gender('path/to/image.jpg', model)
print(f"Age: {age}, Gender: {gender} ({confidence*100:.2f}%)")

๐Ÿ“ Repository Structure

๐Ÿ“ฆ ML-DL-Portfolio
โ”œโ”€โ”€ ๐Ÿ“‚ Deep Learning/
โ”‚   โ”œโ”€โ”€ ๐ŸŽฏ Age_Gender_Detection2.py          # Multi-task learning
โ”‚   โ”œโ”€โ”€ ๐Ÿšฆ ex_Traffic_sign_classification.py # 43-class CNN
โ”‚   โ”œโ”€โ”€ ๐Ÿ”„ 17__Transfer_Learning.py          # MobileNetV3 fine-tuning
โ”‚   โ”œโ”€โ”€ ๐Ÿฑ 12__cat_dog_Classification_Argumentation.py
โ”‚   โ”œโ”€โ”€ ๐ŸŒธ 09_Flower_manual.py
โ”‚   โ”œโ”€โ”€ ๐Ÿ‘• 11_Fashion_Mist_CNN.py
โ”‚   โ””โ”€โ”€ ... (24 more projects)
โ”‚
โ”œโ”€โ”€ ๐Ÿ“‚ Machine Learning/
โ”‚   โ”œโ”€โ”€ ๐Ÿš— Project_1_Predict_The_Price_of_Used_Car.py
โ”‚   โ”œโ”€โ”€ โš™๏ธ EX_HyperParameter_Tuning_Part2.py
โ”‚   โ”œโ”€โ”€ ๐Ÿ” EX_Feature Engineering_feature_extraction.py
โ”‚   โ”œโ”€โ”€ ๐Ÿ“Š EX_AUC_ROC.py
โ”‚   โ”œโ”€โ”€ ๐ŸŒฒ EX_RandomForest_Classification(Baagging).py
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ˆ EX_polynomial_regression.py
โ”‚   โ””โ”€โ”€ ... (46 more projects)
โ”‚
โ””โ”€โ”€ ๐Ÿ“„ README.md

๐Ÿ’ก Key Learnings

๐ŸŽ“ Technical Skills Developed

  1. Deep Learning Mastery

    • Architecting CNNs from scratch
    • Leveraging transfer learning for limited data scenarios
    • Implementing advanced augmentation strategies
    • Optimizing training with callbacks and mixed precision
  2. Machine Learning Expertise

    • End-to-end ML pipeline development
    • Statistical validation and assumption testing
    • Feature engineering and dimensionality reduction
    • Hyperparameter optimization strategies
  3. Best Practices

    • Writing self-documenting, maintainable code
    • Implementing proper train/validation/test splits
    • Handling imbalanced datasets
    • Model evaluation and selection criteria

๐Ÿข Business Value

  • Predictive Analytics: Price prediction, sales forecasting
  • Computer Vision: Age/gender detection, object classification
  • Automation: Recommendation systems, automated classification
  • Decision Support: Statistical modeling, risk assessment

๐Ÿค Connect With Me

Sachin Paunikar

Data Scientist | Machine Learning Engineer

Email LinkedIn GitHub


๐Ÿ“ฌ Let's Collaborate!

I'm actively seeking opportunities in Data Science, Machine Learning Engineering, and AI Research.

Open to:

  • Full-time positions
  • Freelance projects
  • Research collaborations
  • Technical consulting

โญ If you find this repository helpful, please consider giving it a star!

๐Ÿ“ All code is well-documented and ready for production use

๐Ÿ”„ Regularly updated with new projects and improvements


๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


Built with โค๏ธ by Sachin Paunikar

Transforming Data into Actionable Insights

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages