Enterprise-grade order flow pattern detection system for cryptocurrency trading, built with enterprise patterns and designed for high-frequency, low-latency analysis.
- Delta Analysis: Buy/sell volume delta analysis with momentum detection
- Cumulative Delta: Advanced cumulative volume delta with divergence detection
- Footprint Chart: Price-level volume analysis with market structure identification
- Imbalance Detection: Real-time order imbalance pattern recognition
- Absorption Detection: Large order absorption pattern analysis
- Exhaustion Detection: Momentum exhaustion pattern identification
- Iceberg Orders: Detection of hidden large orders using multiple algorithms
- Spoofing Detection: Comprehensive market manipulation detection
- Layering Detection: Multi-level fake order detection
- Momentum Ignition: False momentum creation detection
- Stop Hunting: Predatory trading pattern detection
- Accumulation/Distribution: Institutional flow pattern analysis
- Volume Profile: Multi-timeframe volume profile analysis
- VWAP Analysis: Volume-weighted average price with deviations
- Point of Control: Dynamic POC identification
- Value Area: Statistical value area calculations
- Liquidity Zones: Market liquidity analysis
- Volume Clusters: Significant volume cluster detection
- LSTM Flow Predictor: Deep learning for order flow prediction
- Transformer Patterns: Advanced pattern recognition
- XGBoost Detection: Gradient boosting for anomaly detection
- Random Forest: Ensemble classification
- Neural Networks: Deep neural networks for complex patterns
- Ensemble Models: Combined model approaches
- Stream Processing: High-performance real-time analysis
- WebSocket Handling: Multi-exchange data streaming
- Order Book Analysis: Real-time order book processing
- Trade Stream: Live trade data analysis
- Alert Generation: Real-time pattern alerts
Built on enterprise patterns:
- High-Performance Computing: Optimized for microsecond latency
- Stream Processing: Real-time data processing
- Event-Driven: Asynchronous event processing
- Microservices: Modular, scalable architecture
- Cloud-Native: Container-ready with Kubernetes support
- Python 3.11+
- Node.js 18+
- Redis 6+
- PostgreSQL 13+
cd packages/ml-order-flow-detection
pip install -e .
# Install development dependencies
pip install -e ".[dev,quality,performance]"
# Install pre-commit hooks
pre-commit install
# Run tests
pytest tests/ -v --cov=src
# Run quality checks
ruff check src/ tests/
mypy src/
from src.order_flow.delta_analyzer import DeltaAnalyzer
from src.order_flow.cumulative_delta import CumulativeDeltaAnalyzer
from src.order_flow.footprint_chart import FootprintAnalyzer
# Initialize analyzers
delta_analyzer = DeltaAnalyzer("BTCUSDT")
cumulative_analyzer = CumulativeDeltaAnalyzer("BTCUSDT")
footprint_analyzer = FootprintAnalyzer("BTCUSDT")
# Process trade data
async def process_trade(price: float, volume: float, is_buy: bool):
# Delta analysis
delta_metrics = await delta_analyzer.add_trade(price, volume, is_buy)
patterns = await delta_analyzer.detect_patterns()
# Cumulative delta
cum_bar = await cumulative_analyzer.add_trade(price, volume, is_buy)
# Footprint analysis
footprint_bar = await footprint_analyzer.add_trade(price, volume, is_buy)
return {
'delta': delta_metrics,
'cumulative': cum_bar,
'footprint': footprint_bar,
'patterns': patterns
}from src.patterns.iceberg_detector import IcebergDetector
from src.patterns.spoofing_detector import SpoofingDetector
# Initialize detectors
iceberg_detector = IcebergDetector("BTCUSDT")
spoofing_detector = SpoofingDetector("BTCUSDT")
# Analyze order book for icebergs
order_book = {
'bids': [(50000.0, 1.5), (49999.0, 2.0)],
'asks': [(50001.0, 1.2), (50002.0, 1.8)]
}
icebergs = await iceberg_detector.analyze_order_book(order_book)
# Process order events for spoofing
from src.patterns.spoofing_detector import OrderEvent
order_event = OrderEvent(
timestamp=time.time(),
order_id="12345",
price=50000.0,
size=5.0,
side="buy",
event_type="place"
)
spoofing_signals = await spoofing_detector.process_order_event(order_event)from src.realtime.stream_processor import StreamProcessor
from src.realtime.websocket_handler import WebSocketHandler
# Initialize stream processor
processor = StreamProcessor(["BTCUSDT", "ETHUSDT"])
# Start processing
await processor.start()
# Process incoming data
async def on_trade(symbol, price, volume, side):
analysis = await processor.analyze_trade(symbol, price, volume, side)
if analysis.get('patterns'):
print(f"Patterns detected: {analysis['patterns']}")
# WebSocket handling
ws_handler = WebSocketHandler("wss://api.exchange.com/ws")
await ws_handler.connect()
await ws_handler.subscribe_trades(["BTCUSDT"])from src.volume_profile.volume_profile_builder import VolumeProfileBuilder
from src.volume_profile.vwap_calculator import VWAPCalculator
# Build volume profile
profile_builder = VolumeProfileBuilder("BTCUSDT")
vwap_calc = VWAPCalculator("BTCUSDT")
# Process market data
for trade in historical_trades:
await profile_builder.add_trade(
trade['price'],
trade['volume'],
trade['timestamp']
)
vwap_data = await vwap_calc.update(
trade['price'],
trade['volume'],
trade['timestamp']
)
# Get volume profile
profile = profile_builder.get_profile()
poc = profile_builder.get_point_of_control()
value_area = profile_builder.get_value_area()from src.ml.lstm_flow_predictor import LSTMFlowPredictor
from src.ml.xgboost_detector import XGBoostDetector
# Train LSTM model
lstm_model = LSTMFlowPredictor()
await lstm_model.train(training_data)
# Make predictions
prediction = await lstm_model.predict(current_features)
# XGBoost anomaly detection
xgb_detector = XGBoostDetector()
await xgb_detector.fit(normal_patterns, anomalous_patterns)
anomaly_score = await xgb_detector.detect_anomaly(current_pattern)from src.utils.config import get_settings, OrderFlowSettings
# Get global settings
settings = get_settings()
# Custom configuration
custom_settings = OrderFlowSettings(
environment="production",
order_flow=OrderFlowConfig(
tick_size=0.01,
imbalance_threshold=0.7,
absorption_ratio=2.0
),
ml_models=MLModelConfig(
batch_size=1024,
learning_rate=0.001
)
)from src.backtesting.flow_backtester import FlowBacktester
# Initialize backtester
backtester = FlowBacktester()
# Define strategy
async def order_flow_strategy(data):
if data.delta_ratio > 0.7:
return {'action': 'buy', 'confidence': data.confidence}
elif data.delta_ratio < 0.3:
return {'action': 'sell', 'confidence': data.confidence}
return {'action': 'hold'}
# Run backtest
results = await backtester.run(
strategy=order_flow_strategy,
data=historical_data,
start_date="2024-01-01",
end_date="2024-12-31"
)
print(f"Total Return: {results.total_return:.2%}")
print(f"Sharpe Ratio: {results.sharpe_ratio:.2f}")
print(f"Max Drawdown: {results.max_drawdown:.2%}")from src.api.rest_api import app
# Start REST API server
uvicorn.run(app, host="0.0.0.0", port=8000)Available endpoints:
GET /api/v1/analysis/{symbol}/delta- Delta analysisGET /api/v1/analysis/{symbol}/patterns- Detected patternsGET /api/v1/volume-profile/{symbol}- Volume profilePOST /api/v1/detect/iceberg- Iceberg detectionPOST /api/v1/detect/spoofing- Spoofing detection
from src.api.websocket_server import WebSocketServer
# Start WebSocket server
server = WebSocketServer(port=8001)
await server.start()WebSocket channels:
/ws/analysis/{symbol}- Real-time analysis/ws/patterns/{symbol}- Pattern alerts/ws/alerts- System alerts
from src.visualization.flow_visualizer import FlowVisualizer
from src.visualization.dashboard_api import DashboardAPI
# Create visualizations
visualizer = FlowVisualizer()
chart = visualizer.create_footprint_chart(footprint_data)
heatmap = visualizer.create_delta_heatmap(delta_data)
# Start dashboard
dashboard = DashboardAPI()
await dashboard.start(port=8050)# Run all tests
pytest tests/ -v
# Run specific test categories
pytest tests/unit/ -v # Unit tests
pytest tests/integration/ -v # Integration tests
pytest tests/test_ml_models.py # ML model tests
# Run with coverage
pytest tests/ -v --cov=src --cov-report=html
# Run performance tests
pytest tests/performance/ -v --benchmark-only
- Order processing: < 100ΞΌs
- Pattern detection: < 1ms
- ML inference: < 10ms
- API response: < 50ms
- Orders/second: 100,000+
- Trades/second: 50,000+
- WebSocket messages: 1M+/second
- Concurrent connections: 10,000+
- Input validation and sanitization
- Rate limiting and DDoS protection
- Authentication and authorization
- Encrypted data transmission
- Audit logging and monitoring
- Compliance reporting
- API Reference
- Pattern Guide
- ML Models Guide
- Configuration Reference
- Performance Tuning
- Deployment Guide
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run quality checks
- Submit a pull request
MIT License - see LICENSE file for details.
- Options flow integration
- Cross-asset arbitrage detection
- Enhanced ML models (GPT, BERT)
- Real-time risk management
- Mobile dashboard
- Cloud deployment automation
- Documentation: docs/
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Built with β€οΈ using enterprise patterns for Crypto Trading Bot v5.0
For questions and support, please open an issue on GitHub.