- Date: 2026-01-21
- Status: In Progress
- Author: Colin MANYRI
- License: MIT – Copyright (c) 2026 Colin MANYRI
- Version: 10.0.26
This project implements several complete pipelines for satellite image segmentation, including:
- Image preprocessing
- Feature extraction
- CNN-based model training (e.g., U-Net)
- Probabilistic models (histogram-based segmentation)
- Post-processing of results
- Model evaluation and reporting
The pipelines are designed to be modular and flexible, allowing experimentation with different features, models, and evaluation strategies.
Land Cover for Aerial Imagery (Landcover AI)
- License: Creative Commons
- Kaggle: https://www.kaggle.com/datasets/aletbm/land-cover-from-aerial-imagery-landcover-ai
- Official website: https://landcover.ai.linuxpolska.com/
Minimal required data:
images/– satellite imageslabels/– segmentation masks
Optional:
raw_data/– allows recreating Train/Validation/Test splits using the providedsplit.pyscript
This project extracts multiple types of features from images for segmentation, grouped into main categories:
- Color and spectral: RGB, HSV, NDVI, Water Index
- Intensity and multi-scale context: Grayscale, Gaussian blur (multi-scale)
- Gradient and structural: Gradient magnitude & orientation, anisotropy, corner density
- Texture: Local variance, local entropy, LBP
- src/ – All source code
- data/ – Dataset (images, labels, raw_data)
- logs/ – Project log files
- .trash/ – Old, useless or deleted files
- documents/ – Documentation files and plots
- src_structure – Description of all source files
- data_structure – Structure of data folders
- FinalProject – Academic subject for the project
- plot/ – Plots for data analysis and evaluation
- evaluation_strategy – Explanation of evaluation methods
Recommended IDE: VS Code AI Code Assistance: GitHub Copilot, Claude Sonnet 4.5, ChatGPT 5.1 Python version: 3.10.19 Environment Manager: Conda
conda create -n IMG_SEG python=3.10
conda activate IMG_SEGpip install -r requirements.txt- CPU: Intel i5-12400f (minimum)
- RAM: 16 GB DDR4
- GPU: NVIDIA RTX 4060 Ti (optional, recommended for faster training)
Training time estimates:
- CPU + downsampling, 50 epochs: ~6–8 hours
- GPU (50 epochs): depends on GPU, typically 20–40 minutes
Create the following folder structure in the data/ folder:
data/
├─ images/
├─ labels/
├─ raw_data/ (optional)
Use the provided split.py script to create Train/Validation/Test splits from the raw data.
If you encounter issues with paths, check the
DataPathclass insrc/cste.py.
- Landcover AI dataset - License: Creative Commons : CC BY-NC-SA 4.0
- Autors of the dataset
- Boguszewski Adrian
- Batorski Dominik
- Ziemba-Jankowska Natalia
- Dziedzic Tomasz
- Zambrzycka Anna
- Kaggle uploader pseudo
- AleTBM
For questions or issues regarding code execution:
Colin MANYRI – colin.manyri@etu.utc.fr