AI-powered release readiness evaluation system for news aggregation platforms.
This project analyzes launch plans using LLM agents + Retrieval-Augmented Generation (RAG) to deliver evidence-backed readiness scores, risks, and strategic recommendations.
Built as a production-style AI agent system with persistent audit history, explainable evidence traces, and a high-fidelity dashboard UI.
- Launch Planner Validation Agent
- Converts raw ideas into structured launch plans
- Outputs steps, risks, owners, and success metrics
- Release Readiness Evaluation Agent
- Scores readiness (LOW / MEDIUM / HIGH)
- Produces confidence score + actionable recommendations
- Uses RAG grounding for factual, explainable outputs
- FAISS-based semantic retrieval
- Seeded domain documents:
- Scalability best practices
- Publisher licensing constraints
- Privacy & GDPR compliance
- Every recommendation is evidence-backed
- All agent runs are stored in a database
- History sidebar with:
- Title generation
- Readiness score
- Timestamped audit trail
- Full replay of:
- Input plan
- AI output
- Retrieved evidence snippets
- Futuristic glass-morphic dashboard
- Live agent execution
- Confidence score visualization
- Structured recommendations
- Transparent RAG evidence trace
- Retry-safe API hooks & loading state
User Input
↓
React Dashboard (Vite)
↓
FastAPI Backend
├── Planner Validation Agent (Gemini)
├── Release Readiness Agent
│ ├── FAISS RAG Retrieval
│ ├── Evidence Synthesis
│ └── Gemini Reasoning
├── JSON Output Validator
└── Persistence Layer (SQLite / Postgres)
↓
Explainable AI Results + Audit History
- Python
- FastAPI
- Google Gemini (LLM)
- FAISS (Vector Search)
- SQLAlchemy
- Alembic
- SQLite (default) → PostgreSQL ready
- React
- Vite
- Custom Hooks (retry logic)
- Advanced CSS (glassmorphism, animations)
news-launch-assistant/
├── backend/
│ ├── Dockerfile
│ ├── requirements.txt
│ ├── main.py
│ ├── agents/
│ ├── api/
│ ├── rag/
│ ├── db/
│ └── utils/
├── frontend/
│ ├── Dockerfile
│ ├── src/
│ ├── index.html
│ └── package.json
├── docker-compose.yml
└── README.md
| Method | Endpoint | Description |
|---|---|---|
| GET | /health |
Service health check |
| POST | /planner/validate |
Validate & structure launch plan |
| POST | /agent/run |
Execute release readiness agent |
| GET | /history |
List past agent runs |
| GET | /history/{id} |
Retrieve full audit trace |
| GET | /features |
Capability discovery |
| POST | /ai/gemini |
Gemini proxy |
{ "readiness": "HIGH", "score": 95, "recommendations": [ "Confirm asynchronous ingestion pipelines for traffic spikes.", "Verify fallback strategies for publisher API downtime.", "Ensure continuous review of licensing agreements." ] }
Each recommendation is accompanied by retrieved RAG evidence.
- Multi-agent LLM orchestration
- RAG system design
- Explainable AI pipelines
- Full-stack AI engineering
- Production-grade persistence & auditing
Suitable for coursework, graduation projects, and AI portfolios.
- PostgreSQL + pgvector
- Authentication & multi-user history
- Streaming agent responses
- Live document ingestion
- Model comparison (Gemini / GPT / Claude)
- CI-based readiness scoring