Skip to content

QIC-S Theory Ver 9.2: Explaining galaxy rotation curves without dark matter. Features Galactic Phase Transition (Order/Chaos) and Universal Scaling Law (D_eff ~ R^1.38).

License

Notifications You must be signed in to change notification settings

QuantumInfoCosmo/QIC-S_Ver9.2

Repository files navigation

Quantum Information Cosmology (QIC-S) Ver 9.2

License: MIT DOI

Two-Tier Steady-State Cosmology and the Discovery of a Universal Scaling Law

A unified theoretical framework explaining galactic rotation curves without invoking particle dark matter, reconceptualizing the universe as a Two-Tier System where gravity emerges from information transport and interface energy.


Key Results

1. Galactic Phase Transition (N = 170)

Analysis of the complete SPARC database demonstrates a clear bimodal distribution:

Phase Criterion Count Percentage
Order (Stable) M < 0.5 133 78.2%
Chaos (Unstable) M ≥ 0.5 37 21.8%

The sharp concentration near M ≈ 0 demonstrates that the majority of galaxies have achieved thermodynamic equilibrium with Tier 2 (Cosmic Web).

Figure 2: Phase Distribution Figure 2: Distribution of QIC-S Phase Metric M for 170 SPARC galaxies. Order Phase (blue): 78.2%, Chaos Phase (red): 21.8%.

2. Universal Scaling Law — A Discovery

We discover a single power law spanning four orders of magnitude from galactic scales (~10 kpc) to cosmic large-scale structures (15 Mpc):

$$D_{\text{eff}} \propto R^{1.38} \quad (R^2 = 0.920)$$

Figure 3: Universal Scaling Law Figure 3: Universal scaling of Hamiltonian dynamics from galaxies to filaments. SPARC galaxies (N=170) and Cosmic Web filaments align on a single power law.

Bootstrap Validation (N = 10,000 resamples):

  • Scaling exponent: α = 1.40 ± 0.10
  • 95% CI: [1.24, 1.59]
  • Strictly excludes trivial kinematic scaling (α = 1.0)

Figure 4: Bootstrap Analysis Figure 4: Statistical validation via bootstrap resampling. The 95% CI strictly excludes α = 1.0.

This constitutes definitive evidence that galaxies and Cosmic Web filaments belong to the same universality class.


Theoretical Framework

Two-Tier Architecture

Figure 1: Hamiltonian Landscape Figure 1: Representative Order Phase galaxy NGC 0100. Upper: rotation curve with QIC-S prediction. Lower: Hamiltonian Landscape visualization (M = 0.164).

Tier 1: Regenerative Cosmology

  • Galactic scale: Birth → Growth → Death → Rebirth
  • Time: A locally emergent phenomenon
  • Six-phase galactic lifecycle

Tier 2: New Steady-State Cosmology

  • Cosmic scale: Stationary (Eternal Present)
  • Angular momentum circulation via Cosmic Web

Fundamental Constant

The critical acceleration scale derived from first principles:

$$a_0 = \frac{cH_0}{2\pi} \approx 1.2 \times 10^{-10} \text{ m/s}^2$$


Repository Structure

QIC-S_Ver9.2/
├── Sasada_QIC-S_Ver9.2.pdf    # Full paper (English)
├── phase_analysis.py          # Phase Metric (M) calculation
├── qics_analyzer.py           # Figure 1: Hamiltonian Landscape
├── plot_histogram.py          # Figure 2: Phase distribution
├── plot_scaling_law.py        # Figure 3: Universal scaling law
├── bootstrap_analysis.py      # Figure 4: Bootstrap validation
├── requirements.txt           # Python dependencies
├── results/
│   └── QIC_S_Result_N170.csv  # Analyzed dataset
├── figures/
│   ├── Figure_1_NGC0100.png           # Hamiltonian Landscape
│   ├── Figure_2_Phase_Distribution.png # Phase histogram (N=170)
│   ├── Figure_3_Universal_Scaling_Law.png  # Universal scaling law
│   └── Figure_4_Bootstrap_Analysis.png     # Bootstrap validation
├── LICENSE
└── README.md

Installation & Usage

Requirements

  • Python 3.8+
  • NumPy, Matplotlib, SciPy, Pandas

Setup

# Clone the repository
git clone https://github.com/QuantumInfoCosmo/QIC-S_Ver9.2.git
cd QIC-S_Ver9.2

# Install dependencies
pip install -r requirements.txt

Reproducing Figures

# Figure 1: Hamiltonian Landscape visualization
python qics_analyzer.py

# Figure 2: Phase distribution histogram (N=170)
python plot_histogram.py

# Figure 3: Universal scaling law (galaxies + filaments)
python plot_scaling_law.py

# Figure 4: Bootstrap statistical validation
python bootstrap_analysis.py

Note: All scripts read data from results/QIC_S_Result_N170.csv.


Data Availability

Analyzed Dataset

The file results/QIC_S_Result_N170.csv contains pre-computed Phase Metrics and transport coefficients for all 170 SPARC galaxies meeting quality criteria.

Column Description
Galaxy Galaxy identifier (SPARC ID)
M Phase Metric (log-variance of Hamiltonian gradient)
R Characteristic scale [kpc]
D_eff Effective transport coefficient [kpc·km/s]

Note: The classification (Order/Chaos) is determined by the threshold M = 0.5.

Original Data Source

Rotation curve data derived from the SPARC database:

Lelli, F., McGaugh, S. S., & Schombert, J. M. 2016, AJ, 152, 157
http://astroweb.case.edu/SPARC/


Methodology

Phase Metric Definition

The Phase Metric M quantifies dynamical state using log-variance of the Hamiltonian gradient:

$$M = \text{Var}\left(\log(|\nabla H| + \varepsilon)\right)$$

where $\nabla H \approx v^2/r$ and $\varepsilon = 10^{-10}$ for numerical stability.

Physical interpretation: Log-transformation extracts pure "entropic fluctuations" independent of scale, distinguishing laminar (Order) from turbulent (Chaos) information flow.

Effective Transport Coefficient

$$D_{\text{eff}} = R \times v$$

Represents scale-dependent effective dynamical coupling from a renormalization group perspective.


Note on Version Differences

Important: The Phase Metric calculation methodology differs between versions.

Version Data Range Example (NGC 6503) Description
Ver 9.1 Flat region only M ≈ 0.17 Calculated M using only the flat (outer) region of rotation curves
Ver 9.2 (Current) All data points M ≈ 0.57 Updated to use complete rotation curve data for rigorous validation

Key implications:

  • Some galaxies (e.g., NGC 6503) show higher M values in Ver 9.2 due to inclusion of inner rotation curve regions with steeper velocity gradients
  • NGC 6503 is reclassified from Order Phase (Ver 9.1) to Chaos Phase (Ver 9.2)
  • The code in this repository reflects the Ver 9.2 methodology

This methodological refinement enhances robustness by capturing the full dynamical information content of each galaxy's rotation curve.


Citation

DOI: 10.17605/OSF.IO/9A3CD

If you use this code or data, please cite:

@article{sasada2026qics,
  author  = {Sasada, Yoshiaki},
  title   = {Two-Tier Steady-State Cosmology and the Discovery of a Universal Scaling Law: {QIC-S} Theory Ver 9.2},
  year    = {2026},
  month   = {February},
  doi     = {10.17605/OSF.IO/9A3CD},
  url     = {https://doi.org/10.17605/OSF.IO/9A3CD}
}

Related Work

  • SPARC Database: Lelli, McGaugh, & Schombert (2016), AJ, 152, 157
  • Filament Rotation: Tudorache et al. (2025), MNRAS, 544, 4306
  • ER=EPR Conjecture: Maldacena & Susskind (2013), Fortsch. Phys., 61, 781
  • Conformal Interfaces: Komatsu, Kusuki, Meineri, & Ooguri (2025), arXiv:2512.11045

Acknowledgments

This research was assisted by AI systems (Claude for theoretical articulation and Gemini for numerical analysis). All physical interpretations and theoretical frameworks are the sole responsibility of the author.


License

This project is licensed under the MIT License - see the LICENSE file for details.


Contact

For questions regarding this research, please open an issue or contact via the repository.

Repository: https://github.com/QuantumInfoCosmo/QIC-S_Ver9.2