This repository contains the code for a robotics project that implements state estimation using Dual Quaternions. The approach fuses wheel encoder and IMU sensor data to estimate the robot's pose, velocity, and covariance using a dual quaternion-based predict-correct filter.
- Translation data from wheel encoders
- Orientation data from IMU
- Dual quaternion operations for pose and velocity propagation
- Custom Kalman filter-like state estimation using
predict()andcorrect()functions
.
├── `include/` # Header for dual quaternion operations
├── `src/` # Main localization logic, callbacks, predict/correct functions
├── `launch/` # ROS launch file for bringing up the node
├── `urdf/` # URDF model of the robot
├── `meshes/` # 3D model resources used in URDF
├── `worlds/` # Gazebo simulation world
├── `rviz/` # RViz configuration for visualization
├── `param/` # Parameter files for ROS nodes
├── dqekf_paper_draft.pdf # Draft paper describing methodology and implementation
├── README.md # Project overview
For a detailed explanation of the methodology, dual quaternion math, and results: Draft Paper (PDF)
Rishab Agrawal