Skip to content

Dual quaternion-based state estimation using ROS and Kalman-type sensor fusion

Notifications You must be signed in to change notification settings

Rishab-Agrawal/dqekf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

State Estimation using Dual Quaternions

This repository contains the code for a robotics project that implements state estimation using Dual Quaternions. The approach fuses wheel encoder and IMU sensor data to estimate the robot's pose, velocity, and covariance using a dual quaternion-based predict-correct filter.


Project Summary

  • Translation data from wheel encoders
  • Orientation data from IMU
  • Dual quaternion operations for pose and velocity propagation
  • Custom Kalman filter-like state estimation using predict() and correct() functions

Repository Structure

.
├── `include/`                 # Header for dual quaternion operations  
├── `src/`                     # Main localization logic, callbacks, predict/correct functions  
├── `launch/`                  # ROS launch file for bringing up the node  
├── `urdf/`                    # URDF model of the robot  
├── `meshes/`                  # 3D model resources used in URDF  
├── `worlds/`                  # Gazebo simulation world  
├── `rviz/`                    # RViz configuration for visualization
├── `param/`                   # Parameter files for ROS nodes
├── dqekf_paper_draft.pdf      # Draft paper describing methodology and implementation
├── README.md                  # Project overview


Project Paper Draft

For a detailed explanation of the methodology, dual quaternion math, and results: Draft Paper (PDF)


Author

Rishab Agrawal

About

Dual quaternion-based state estimation using ROS and Kalman-type sensor fusion

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published