A transformer-based framework that integrates textual and socio-demographic embeddings to enhance task matching.
-
Clone the repository:
git clone https://github.com/your-username/RecomText.git cd SODAOpt -
Create and activate virtual environment:
python -m venv venv source venv/bin/activate # for Linux/Mac venv\Scripts\activate # for Windows
-
Install dependencies:
pip install -r requirements.txt
-
Place your source data in the
data/directory:- train_events.csv
- repo_info.csv
- train_targets.csv
- all_events.csv
-
Run the data preparation script:
python -m data.baseline_socdem
-
Configure parameters in
configs/config.yaml -
Start training via Jupyter notebook:
jupyter notebook notebooks/train.ipynb
Alternatively, use the training script:
python train.py
Use the following code for getting recommendations:
допишу чуть позже
data/- data processing modulesmodels/- model architecturesutils/- utility functionsnotebooks/- jupyter notebooksconfigs/- configuration files
- Python 3.8+
- CUDA-compatible GPU (optional)
- Multimodal embeddings combining text and IDs
- Contrastive learning approach
- Efficient batch processing
- Support for both CPU and GPU inference
- Configurable model architecture
MIT License
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
add later