Skip to content

Sayedcodes/House-price-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🏠 House Price Prediction App

A simple Machine Learning web application built using Streamlit that predicts house prices based on user input features. This project demonstrates an end-to-end ML workflow β€” from model training to deployment on Streamlit Cloud.


πŸš€ Live Demo

πŸ‘‰ https://houseprice-me.streamlit.app


πŸ“Œ Features

  • Interactive and user-friendly UI
  • Predicts house prices in real-time
  • Trained ML regression model
  • Deployed on Streamlit Cloud
  • Lightweight and fast

🧠 Machine Learning Overview

  • Algorithm used: Regression (Linear / ML-based)
  • Libraries: scikit-learn, pandas, numpy
  • Model serialization: joblib / pickle

The model is trained on housing data and then loaded into the Streamlit app for prediction.


πŸ› οΈ Tech Stack

  • Python 3.10
  • Streamlit (Web App Framework)
  • Pandas & NumPy (Data handling)
  • Scikit-learn (Machine Learning)
  • Altair (Data visualization)

πŸ“‚ Project Structure

houseprice/
β”‚
β”œβ”€β”€ app.py               # Main Streamlit app
β”œβ”€β”€ requirements.txt    # Project dependencies
β”œβ”€β”€ pipe.pkl            # Trained ML model
└── README.md            # Project documentation

βš™οΈ Installation & Setup (Local)

  1. Clone the repository
git clone https://github.com/Sayedcodes/houseprice.git
cd houseprice
pip install -r requirements.txt
streamlit run app.py
  1. Create virtual environment (optional but recommended)
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
  1. Install dependencies
pip install -r requirements.txt
  1. Run the app
streamlit run app.py

☁️ Deployment (Streamlit Cloud)

Steps followed:

  1. Push project to GitHub
  2. Add requirements.txt with version pinning
  3. Add runtime.txt to lock Python version
  4. Deploy using Streamlit Cloud

πŸ“ˆ Future Improvements

  • Add more features & better dataset
  • Improve UI/UX
  • Add model evaluation metrics
  • Add multiple ML models

πŸ‘¨β€πŸ’» Author

Sayed Mohammad Hamza


⭐ Support

If you like this project, give it a ⭐ on GitHub β€” it really helps!

Happy Coding πŸš€

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages