Skip to content

Time-series forecasting of HSN Code 8482 trade flows (2014–2026) using ARIMA and ARIMAX models with performance evaluation and visualization.

Notifications You must be signed in to change notification settings

Snahab/HSN-Code-8482-Forecasting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HSN Code 8482 – Import & Export Forecasting (2014–2026)

📌 Project Overview

This project develops a time-series forecasting model for trade flows of HSN Code 8482 (Ball & Roller Bearings) in India.

The objective is to:

  • Analyze historical trade data (2014–2024)
  • Forecast import and export values for 2025–2026
  • Evaluate predictive performance using statistical error metrics

📊 Dataset Information

  • Period Covered: 2014–2024
  • Trade Flows:
    • Imports (M)
    • Exports (X)
  • Metric Used: Trade Value (US$)

🧠 Methodology

Data Preparation

  • Converted trade values into numeric format
  • Mapped trade flows (M → Imports, X → Exports)
  • Created yearly pivot table for modeling

Modeling Approach

Imports Model

  • ARIMA (1,1,1)

Exports Model

  • ARIMAX (1,1,1)
  • Imports used as an exogenous variable

Evaluation Metrics

  • MAE (Mean Absolute Error)
  • RMSE (Root Mean Squared Error)

📊 Model Performance

Imports – ARIMA (1,1,1)

  • MAE: 70,663,385.29
  • RMSE: 79,375,737.08
Year Actual (US$) Predicted (US$) Error
2023 1,329,567,039 1,295,058,786 2.60%
2024 1,400,087,595 1,293,269,077 7.63%

Exports – ARIMAX (1,1,1)

  • MAE: 73,209,916.56
  • RMSE: 88,569,896.68
Year Actual (US$) Predicted (US$) Error
2023 783,726,023 807,086,820 2.98%
2024 753,998,896 877,057,932 16.32%

🔮 Forecast Results (2025–2026)

Imports Forecast

Year Forecast (US$)
2025 1,293,053,838
2026 1,293,027,952

Exports Forecast

Year Forecast (US$)
2025 787,331,237
2026 819,132,972

📈 Forecast Visualization

HSN 8482 Forecast


🛠️ Technologies Used

  • Python
  • Pandas
  • NumPy
  • Matplotlib
  • Statsmodels
  • Scikit-learn
  • Jupyter Notebook

🚀 How to Run This Project

  1. Install dependencies: pip install -r requirements.txt

  2. Launch Jupyter Notebook: jupyter notebook

  3. Open: notebooks/HSNCode.ipynb


📌 Key Insights

  • Imports are projected to remain stable around 1.29B US$
  • Exports show moderate growth from 2025 to 2026
  • ARIMAX improves export forecasting by incorporating import trends
  • Model accuracy ranges between 2–16% error

📄 License

This project is developed for academic and analytical purposes.

About

Time-series forecasting of HSN Code 8482 trade flows (2014–2026) using ARIMA and ARIMAX models with performance evaluation and visualization.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published