Skip to content

Soumojitshome2023/DSP-Octave-Lab-5thSem-AOT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Octave Code

Basic : Code1 to Code17


Graph :

Code 18 : Plot the function given of y =sin(x) where 0<x<2pi considering 30 points between 0 and 2pi

code18


Code 19 : plot more than one curve sin(x) and cos(x) on the same plot

code19


Code 20 : plot sinx cosx on the same plot using a color, marker and a line style

code20


Code 21 : plot sinx cosx on the same plot using grid, lines, labels

code21


Code 22 : plot sinx cosx on the same plot using hold on command

code22


Code 23 : plot sinx, cosx, 2sinxcosx, sinx/cosx in one window using subplot command

code23


Code 24 : Discrete time signal plot using octave (i) unit impulse signal (ii) unit step (iii) Ramp (iv) Parabolic Signal

code24


Code 25 : In octave plot a square wave of amplitude 5 and -5 unit using for loop

code25


Code 26 : Find linear convolution of

code26


Code 27 : Find linear convolution of two user input sequence using 'conv' function, also plot the given sequence and convolute sequence

code27


Code 31 : Write octave program to find 4 and 8 point DFT

Command Window
Enter length : 4
z =

   3.0000-0i     0-1.0000i   1.0000 + 0.0000i  -0.0000 + 1.0000i



  • 4 Point : code31
  • 8 Point : code31

Code 32 : IDFT (Inverse DFT) Without using built-in functions

Command Window
Enter the Sequence: [12, -4+4j, -4, -4-4j]
Enter the length of DFT, N: 4

Reconstructed Sequence X(n):
   0   2   4   6

  • 8 Point : code32
  • 50 Point : code32

Code 33 : Circular Convolution Program Without using built-in functions

Enter the 1st Sequence: [1,2,3,4]
Enter the 2nd Sequence: [1,1,1,1]
Circular Convolution Result:
   10   10   10   10

code33


Code 34 : User Input DFT Without using built-in functions


Command Window
Enter the length of DFT (N): 4
Enter the sequence X[n]: [0,2,4,6]
DFT Result Z[k]:
   12.0000+0i   -4.0000+4.0000i   -4.0000-0.0000i   -4.0000-4.0000i


Best Of Luck 🤗 🎉

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages