Skip to content

A lightweight framework, a simple LangChain alternative, for building AI agents in Python.

License

Notifications You must be signed in to change notification settings

Ssshiponu/axcent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Axcent

The easiest way to build AI agents in Python.

Axcent is a lightweight framework designed to let you build powerful AI agents with tool calling, context caching, and multi-backend support in just a few lines of code.

Installation

pip install axcent

To use Gemini models:

pip install axcent[gemini]

Quick Start (OpenAI)

import os
from axcent import Agent

# Set your API Key
os.environ["OPENAI_API_KEY"] = "sk-..."

# Initialize Agent
agent = Agent(system_prompt="You are a helpful assistant.")

# Register a Tool
@agent.tool
def get_weather(city: str) -> str:
    """Returns weather info for a city."""
    return f"The weather in {city} is sunny!"

# Ask away!
response = agent.ask("What is the weather in Tokyo?")
print(response)

Features

  • Simple Tool Registration: Just use @agent.tool.
  • Automatic Context Caching: Optimizes token usage by enforcing stable prompt structures.
  • Token Monitoring: Track prompt, completion, and cached tokens via agent.get_total_usage().
  • Multimodal Support: Process images and audio with the Transcriber class.
  • Backend Agnostic:
    • OpenAI: First-class support with vision.
    • Google Gemini: Support for all latest models including multimodal.
    • OpenRouter: Use any model via OpenRouter API compatibility.

Multimodal: Images & Audio

Axcent v0.3.0 introduces multimodal capabilities. Use the Transcriber class to let your agent "see" images and "hear" audio.

from axcent import Agent, Transcriber
from axcent.llm import GeminiBackend

agent = Agent(system_prompt="You are a helpful assistant.")

@agent.tool
def see_media(path: str) -> str:
    """Analyze an image or audio file."""
    transcriber = Transcriber(
        system_prompt="Describe this media briefly.",
        backend=GeminiBackend()
    )
    return transcriber.transcribe_file(path)

# Now the agent can understand media files!
response = agent.ask("What's in /path/to/image.jpg?")

You can also send images/audio directly with ask():

from axcent import Agent, Image

agent = Agent(model="gpt-4o")  # Vision-capable model
img = Image(url="https://example.com/photo.jpg")
response = agent.ask("What's in this image?", media=[img])

Multi-Backend Usage

Google Gemini

from axcent import Agent, GeminiBackend
import os

# Set API Key (or GOOGLE_API_KEY)
os.environ["GEMINI_API_KEY"] = "AIza..."

# Use Gemini Backend (uses google-genai V2 SDK)
backend = GeminiBackend(model="gemini-3-flash")
agent = Agent(system_prompt="You are a helper.", backend=backend)

OpenRouter

import os
from axcent import Agent

os.environ["OPENAI_API_KEY"] = "sk-or-..."
os.environ["OPENAI_BASE_URL"] = "https://openrouter.ai/api/v1"

agent = Agent(system_prompt="You are a helper.")

License

MIT

About

A lightweight framework, a simple LangChain alternative, for building AI agents in Python.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages