-
Notifications
You must be signed in to change notification settings - Fork 67
add SARAH with tests #2274
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
epapoutsellis
wants to merge
2
commits into
TomographicImaging:master
Choose a base branch
from
epapoutsellis:sarah
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
add SARAH with tests #2274
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,178 @@ | ||
| from cil.optimisation.algorithms import Algorithm | ||
| from cil.optimisation.functions import ApproximateGradientSumFunction | ||
| from cil.optimisation.utilities import ConstantStepSize | ||
| from numbers import Number | ||
| import logging | ||
|
|
||
| class SARAH(Algorithm): | ||
|
|
||
| r"""SARAH algorithm. | ||
|
|
||
| StochAstic Recursive grAdient algoritHm (SARAH) | ||
| Lam M. Nguyen, Jie Liu, Katya Scheinberg, Martin Takáč | ||
| Proceedings of the 34th International Conference on Machine Learning, PMLR 70:2613-2621, 2017. | ||
| https://proceedings.mlr.press/v70/nguyen17b/nguyen17b.pdf | ||
|
|
||
| ##TODO update the math | ||
| .. math:: | ||
|
|
||
| \begin{align*} | ||
| g_k &= \nabla f_{i_k}(x_k) - \nabla f_{i_k} (x_{k-1}) + g_{k-1} \\ | ||
| x_{k+1} &= x_k - \eta g_k | ||
| \end{align*} | ||
|
|
||
| It is used to solve | ||
|
|
||
| .. math:: \min_{x} f(x) + g(x) | ||
|
|
||
| where :math:`f` is differentiable, :math:`g` has a *simple* proximal operator and :math:`\alpha^{k}` | ||
| is the :code:`step_size` per iteration. | ||
|
|
||
|
|
||
| Parameters | ||
| ---------- | ||
|
|
||
| initial : DataContainer | ||
| Starting point of the algorithm | ||
| f : Function | ||
| Differentiable function | ||
| g : Function | ||
| Convex function with *simple* proximal operator | ||
| step_size : positive :obj:`float`, default = None | ||
| Step size for the gradient step of SARAH | ||
| The default :code:`step_size` is :math:`\frac{1}{L}`. | ||
| kwargs: Keyword arguments | ||
| Arguments from the base class :class:`.Algorithm`. | ||
|
|
||
| See also | ||
| -------- | ||
| :class:`.ISTA` | ||
| :class:`.GD` | ||
|
|
||
| """ | ||
|
|
||
| @property | ||
| def step_size(self): | ||
| return self._step_size | ||
|
|
||
| # Set default step size | ||
| def set_step_size(self, step_size): | ||
|
|
||
| """ Set default step size. | ||
| """ | ||
| if step_size is None: | ||
| if isinstance(self.f.L, Number): | ||
| self.initial_step_size = 1.99/self.f.L | ||
| self._step_size = ConstantStepSize(self.initial_step_size) | ||
| else: | ||
| raise ValueError("Function f is not differentiable") | ||
| else: | ||
| if isinstance(step_size, Number): | ||
| self.initial_step_size = step_size | ||
| self._step_size = ConstantStepSize(self.initial_step_size) | ||
| else: | ||
| self._step_size = step_size | ||
|
|
||
| def __init__(self, initial, f, g, step_size = None, update_frequency = None, **kwargs): | ||
|
|
||
| if not isinstance(f, ApproximateGradientSumFunction): | ||
| raise ValueError("An ApproximateGradientSumFunction is required for f, {} is passed".format(f.__class__.__name__)) | ||
| super(SARAH, self).__init__(**kwargs) | ||
|
|
||
| # step size | ||
| self._step_size = None | ||
|
|
||
| # initial step size for adaptive step size | ||
| self.initial_step_size = None | ||
|
|
||
| self.set_up(initial=initial, f=f, g=g, step_size=step_size, update_frequency=update_frequency,**kwargs) | ||
|
|
||
| def set_up(self, initial, f, g, step_size, update_frequency, **kwargs): # update frequency | ||
| """ Set up the algorithm | ||
| """ | ||
|
|
||
| logging.info("{} setting up".format(self.__class__.__name__, )) | ||
|
|
||
| self.initial = initial | ||
| self.f = f # at the moment this is required to be of SubsetSumFunctionClass (so that data_passes member exists) | ||
| self.g = g | ||
|
|
||
| # set problem parameters | ||
| self.update_frequency = update_frequency | ||
| if self.update_frequency is None: | ||
| self.update_frequency = self.f.num_functions | ||
|
|
||
| self.set_step_size(step_size=step_size) | ||
|
|
||
| # Initialise iterates, the gradient estimator, and the temporary variables | ||
| self.x_old = initial.copy() | ||
| self.x = initial.copy() | ||
|
|
||
| self.gradient_estimator = self.x * 0.0 | ||
| self.stoch_grad_at_iterate = self.x * 0.0 | ||
| self.stochastic_grad_difference = self.x * 0.0 | ||
|
|
||
| self.configured = True | ||
| logging.info("{} configured".format(self.__class__.__name__, )) | ||
|
|
||
| def update(self): | ||
|
|
||
| r"""Performs a single iteration of SARAH | ||
|
|
||
| .. math:: | ||
| # TODO: change maths | ||
| \begin{cases} | ||
|
|
||
| \end{cases} | ||
|
|
||
| """ | ||
|
|
||
| self.approximate_gradient(self.x, out=self.gradient_estimator) | ||
| self.x_old = self.x.copy() | ||
| step_size = self.step_size(self) | ||
| self.x.sapyb(1., self.gradient_estimator, -step_size, out = self.x) | ||
| self.x = self.g.proximal(self.x, step_size) | ||
|
|
||
| def approximate_gradient(self, x, out = None): | ||
|
|
||
| update_flag = (self.iteration % (self.update_frequency) == 0) | ||
|
|
||
| if update_flag is True: | ||
|
|
||
| # update the full gradient estimator | ||
| self.f.full_gradient(x, out=self.gradient_estimator) | ||
|
|
||
| if self.iteration == 0: | ||
| if len(self.f.data_passes) == 0: | ||
| self.f.data_passes.append(1) | ||
| else: | ||
| self.f.data_passes[0] = 1. | ||
| else: | ||
| self.f.data_passes.append(self.f.data_passes[-1]+1.) | ||
|
|
||
| if out is None: | ||
| return self.gradient_estimator | ||
| else: | ||
| out = self.gradient_estimator | ||
| else: | ||
|
|
||
| self.f.next_function() | ||
| self.f.functions[self.f.function_num].gradient(x, out=self.stoch_grad_at_iterate) | ||
| self.stoch_grad_at_iterate.sapyb(1., self.f.functions[self.f.function_num].gradient(self.x_old), -1., out=self.stochastic_grad_difference) | ||
|
|
||
| # update the data passes | ||
| self.f.data_passes.append(round(self.f.data_passes[-1] + 1./self.f.num_functions,2)) | ||
|
|
||
| # Compute the output: gradient difference + v_t | ||
| if out is None: | ||
| return self.stochastic_grad_difference.sapyb(self.f.num_functions, self.gradient_estimator, 1.) | ||
| else: | ||
| return self.stochastic_grad_difference.sapyb(self.f.num_functions, self.gradient_estimator, 1., out=out) | ||
|
|
||
|
|
||
| def update_objective(self): | ||
| """ Updates the objective | ||
| .. math:: f(x) + g(x) | ||
| """ | ||
| self.loss.append( self.f(self.get_output()) + self.g(self.get_output()) ) | ||
|
|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,138 @@ | ||
| import unittest | ||
| from utils import initialise_tests | ||
| from cil.optimisation.operators import MatrixOperator | ||
| from cil.optimisation.algorithms import SARAH | ||
| from cil.optimisation.functions import LeastSquares, L2NormSquared, ZeroFunction, ApproximateGradientSumFunction | ||
| from cil.framework import VectorData | ||
| import numpy as np | ||
| from cil.optimisation.utilities import RandomSampling | ||
|
|
||
| initialise_tests() | ||
|
|
||
|
|
||
| from utils import has_cvxpy | ||
|
|
||
| if has_cvxpy: | ||
| import cvxpy | ||
|
|
||
|
|
||
| class TestSARAH(unittest.TestCase): | ||
|
|
||
| def setUp(self): | ||
|
|
||
| np.random.seed(10) | ||
| n = 10 | ||
| m = 200 | ||
| A = np.random.uniform(0,1, (m, n)).astype('float32') | ||
| b = (A.dot(np.random.randn(n)) + 0.1*np.random.randn(m)).astype('float32') | ||
|
|
||
| self.Aop = MatrixOperator(A) | ||
| self.bop = VectorData(b) | ||
|
|
||
| self.n_subsets = 5 | ||
|
|
||
| Ai = np.vsplit(A, self.n_subsets) | ||
| bi = [b[i:i+int(m/self.n_subsets)] for i in range(0, m, int(m/self.n_subsets))] | ||
|
|
||
| self.fi_cil = [] | ||
| for i in range(self.n_subsets): | ||
| self.Ai_cil = MatrixOperator(Ai[i]) | ||
| self.bi_cil = VectorData(bi[i]) | ||
| self.fi_cil.append(LeastSquares(self.Ai_cil, self.bi_cil, c = 0.5)) | ||
|
|
||
| self.F = LeastSquares(self.Aop, b=self.bop, c = 0.5) | ||
| self.G = ZeroFunction() | ||
|
|
||
| self.ig = self.Aop.domain | ||
|
|
||
| self.sampling = RandomSampling.uniform(self.n_subsets) | ||
| self.fi = ApproximateGradientSumFunction(functions=self.fi_cil, selection=self.sampling, data_passes=[0.]) | ||
|
|
||
| self.initial = self.ig.allocate() | ||
|
|
||
|
|
||
| def test_signature(self): | ||
|
|
||
| # required args | ||
| with np.testing.assert_raises(TypeError): | ||
| sarah = SARAH(initial = self.initial, f = self.fi) | ||
|
|
||
| with np.testing.assert_raises(TypeError): | ||
| sarah = SARAH(initial = self.initial, f = self.fi) | ||
|
|
||
| with np.testing.assert_raises(TypeError): | ||
| sarah = SARAH(initial = self.initial, g = self.G) | ||
|
|
||
| with np.testing.assert_raises(ValueError): | ||
| sarah = SARAH(initial = self.initial, f = L2NormSquared(), g = self.G) | ||
|
|
||
| tmp_step_size = 10 | ||
| tmp_update_frequency = 3 | ||
| sarah = SARAH(initial = self.initial, g = self.G, f = self.fi, step_size=tmp_step_size, update_frequency=tmp_update_frequency) | ||
| np.testing.assert_equal(sarah.step_size.initial, tmp_step_size) | ||
| np.testing.assert_equal(sarah.update_frequency, tmp_update_frequency) | ||
|
|
||
| self.assertTrue( id(sarah.x)!=id(sarah.initial)) | ||
| self.assertTrue( id(sarah.x_old)!=id(sarah.initial)) | ||
|
|
||
| def test_data_passes(self): | ||
|
|
||
| sampling = RandomSampling.uniform(self.n_subsets) | ||
| fi = ApproximateGradientSumFunction(functions=self.fi_cil, | ||
| selection=sampling, | ||
| data_passes=[0.]) | ||
|
|
||
| sarah = SARAH(f=fi, g=self.G, update_objective_interval=1, | ||
| initial=self.initial, max_iteration=6) | ||
| sarah.run(verbose=0) | ||
|
|
||
| correct_passes = [1., 1+1/self.n_subsets, | ||
| 1.+2./self.n_subsets, 1+3./self.n_subsets, 1+4/self.n_subsets, 2+4/self.n_subsets] | ||
| np.testing.assert_equal(correct_passes, sarah.f.data_passes) | ||
|
|
||
|
|
||
| @unittest.skipUnless(has_cvxpy, "CVXpy not installed") | ||
| def test_with_cvxpy(self): | ||
| epochs = 300 | ||
| initial = self.ig.allocate() | ||
| sarah = SARAH(f=self.fi, g=self.G, update_objective_interval=200, initial=initial, max_iteration=epochs*self.n_subsets) | ||
| sarah.run(verbose=0) | ||
|
|
||
| u_cvxpy = cvxpy.Variable(self.ig.shape[0]) | ||
| objective = cvxpy.Minimize(0.5 * cvxpy.sum_squares(self.Aop.A @ u_cvxpy - self.bop.array)) | ||
| p = cvxpy.Problem(objective) | ||
| p.solve(verbose=False, solver=cvxpy.SCS, eps=1e-4) | ||
| np.testing.assert_allclose(p.value, sarah.objective[-1], rtol=5e-3) | ||
| np.testing.assert_allclose(u_cvxpy.value, sarah.solution.array, rtol=5e-3) | ||
|
|
||
| def test_update(self): | ||
|
|
||
| initial = self.ig.allocate() | ||
| sarah = SARAH(f=self.fi, g=self.G, update_objective_interval=1, | ||
| initial=initial, max_iteration=2) | ||
| # this should use indices 0 and 1 | ||
| sarah.run(verbose=0) | ||
|
|
||
| x = initial.copy() | ||
| x_old = initial.copy() | ||
|
|
||
| step_size = sarah.step_size.initial | ||
| F_new = ApproximateGradientSumFunction(functions=self.fi_cil, selection=self.sampling, data_passes=[0.]) | ||
|
|
||
| gradient_estimator = F_new.full_gradient(x) | ||
| x.sapyb(1., gradient_estimator, -step_size, out = x) | ||
| x = self.G.proximal(x, step_size) # not sure if this makes sense | ||
|
|
||
| function_num = sarah.f.function_num | ||
| stoch_grad_at_iterate = F_new.functions[function_num].gradient(x) | ||
| stochastic_grad_difference = stoch_grad_at_iterate.sapyb(1., F_new.functions[function_num].gradient(x_old), -1.) | ||
| gradient_estimator = stochastic_grad_difference.sapyb(self.n_subsets, gradient_estimator, 1.) | ||
| x_old = x.copy() | ||
| x.sapyb(1., gradient_estimator, -step_size, out = x) | ||
| x = self.G.proximal(x, step_size) # not sure if this makes sense | ||
|
|
||
| np.testing.assert_allclose(sarah.solution.array, x.array, atol=1e-2) | ||
|
|
||
| res1 = sarah.objective[-1] | ||
| res2 = F_new(x) + self.G(x) | ||
| np.testing.assert_allclose(res1, res2, rtol=1e-5) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi @epapoutsellis the unit tests are failing with:
Should it be this?