Skip to content

End-to-end Sales Revenue Optimization project using SQL (MySQL), Python (Pandas + Matplotlib), and Power BI. Includes data cleaning, KPI generation, EDA, and an interactive business dashboard for retail performance analysis.

Notifications You must be signed in to change notification settings

akshat580/sales-revenue-optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

27 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“Š Sales Revenue Optimization Project

Full-stack business analytics project using SQL, Python (Pandas + Matplotlib), and Power BI.

πŸš€ Project Overview

This project focuses on analyzing retail sales performance and building an end-to-end Sales Revenue Optimization Dashboard. It answers key business questions such as:

Which categories drive the highest sales?

Which regions are most profitable?

What sub-categories underperform?

What is the monthly sales trend?

How can business decisions be improved using data?

🧰 Tech Stack πŸ”Ή SQL (MySQL)

Data cleaning

Data profiling

KPI calculation

Generating business insights

πŸ”Ή Python (Pandas + Matplotlib)

Data loading & cleaning

Exploratory Data Analysis (EDA)

Matplotlib visualizations for trends & distribution

πŸ”Ή Power BI

KPI cards

Bar charts & line charts

Region-wise profitability

Slicers (Year, Category, Region)

Interactive Sales Revenue Optimization Dashboard

πŸ“ Folder Structure Sales_Revenue_Optimization/ β”‚ β”œβ”€β”€ Data/ β”‚ └── Sample - Superstore.csv β”‚ β”œβ”€β”€ SQL/ β”‚ β”œβ”€β”€ 01_setup.sql β”‚ β”œβ”€β”€ 02_data_cleaning.sql β”‚ β”œβ”€β”€ 03_kpi_queries.sql β”‚ └── 04_business_insights.sql β”‚ β”œβ”€β”€ Notebooks/ β”‚ └── superstore_eda.ipynb β”‚ β”œβ”€β”€ Dashboard/ β”‚ └── Sales_Revenue_Optimization.pbix β”‚ β”œβ”€β”€ Project_Report.Screenshot β”‚
β”‚ └── README.md

πŸ“Œ Key KPIs Generated KPI Description Total Sales Overall revenue Total Profit Profit generated Total Orders Number of unique orders Total Products Unique product count Total Customers Unique customers πŸ“ˆ Python EDA Highlights

Using Pandas + Matplotlib:

βœ” Most popular categories βœ” Highest revenue sub-categories βœ” Monthly sales trend βœ” Distribution of discount, quantity, profit

πŸ“Š Power BI Dashboard Features

βœ” Interactive slicers (Category, Region, Segment, Year) βœ” Total Sales, Profit, Orders displayed cleanly βœ” Category-wise sales bar chart βœ” Region-wise profit bar chart βœ” Monthly sales trend line chart βœ” Sub-category performance chart βœ” Professional UI styling (theme, shadows, frames)

πŸ” Business Insights (SQL + Python + BI)

Technology is the highest revenue-generating category

West region contributes the highest profit

Binders, Phones, Chairs dominate sub-category sales

December shows the strongest seasonal sales spike

Some sub-categories like Fasteners & Labels underperform

🧾 How to Run the Project 1️⃣ SQL

Import the SQL files in this order:

01_setup.sql

02_data_cleaning.sql

03_kpi_queries.sql

04_business_insights.sql

2️⃣ Python Notebook

Run:

superstore_eda.ipynb

3️⃣ Power BI

Open:

Sales_Revenue_Optimization.pbix

πŸ“¬ Contact

Akshat Singh Aspiring Data Analyst | SQL β€’ Python β€’ Power BI www.linkedin.com/in/akshatsingh03

About

End-to-end Sales Revenue Optimization project using SQL (MySQL), Python (Pandas + Matplotlib), and Power BI. Includes data cleaning, KPI generation, EDA, and an interactive business dashboard for retail performance analysis.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published