Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 2 additions & 4 deletions src/algorithms/dimension.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,7 @@ function dimension(I::Ideal{T}) where T <: MPolyRingElem
R = parent(first(gb))

res = Set([trues(ngens(R))])
lead_exps = Vector{Vector{Int}}(undef, length(gb))
for i in eachindex(gb)
lead_exps[i] = _lead_exp_ord(gb[i], :degrevlex)
end
lead_exps = [ _lead_exp_ord(g, :degrevlex) for g in gb if !iszero(g) ]
for lexp in lead_exps
nz_exps = (!iszero).(lexp)
nz_exps_ind = findall(nz_exps)
Expand Down Expand Up @@ -62,6 +59,7 @@ function _all_lesseq(a::BitVector, b::BitVector)::Bool
end

function _lead_exp_ord(p::MPolyRingElem, order::Symbol)
@req !iszero(p) "Zero polynomial does not have a leading term"
R = parent(p)
internal_ordering(R)==order && return first(exponent_vectors(p))

Expand Down
11 changes: 4 additions & 7 deletions src/algorithms/hilbert.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,11 +27,8 @@ function hilbert_series(I::Ideal{T}) where T <: MPolyRingElem
gb = get!(I.gb, 0) do
groebner_basis(I, complete_reduction = true)
end
lead_exps = Vector{Vector{Int}}(undef, length(gb))
for i in eachindex(gb)
lead_exps[i] = _lead_exp_ord(gb[i], :degrevlex)
end
return _hilbert_series_mono(lead_exps)
lead_exps = [ _lead_exp_ord(g, :degrevlex) for g in gb if !iszero(g) ]
return _hilbert_series_mono(lead_exps, nvars(parent(I)))
end

@doc Markdown.doc"""
Expand Down Expand Up @@ -134,11 +131,11 @@ function hilbert_polynomial(I::Ideal{T}) where T <: MPolyRingElem
end

# Computes hilbert series of a monomial ideal on input list of exponents
function _hilbert_series_mono(exps::Vector{Vector{Int}})
function _hilbert_series_mono(exps::Vector{Vector{Int}}, nr_vars::Int)

h = _num_hilbert_series_mono(exps)
t = gen(parent(h))
return h//(1-t)^length(first(exps))
return h//(1-t)^nr_vars
end

# Computes numerator hilbert series of a monomial ideal on input list of exponents
Expand Down
4 changes: 4 additions & 0 deletions test/algorithms/dimension.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,10 @@
@test iszero(dimension(I))
@test iszero(I.dim)

I = Ideal([R(0)])
@test dimension(I) == ngens(R)
@test I.dim == ngens(R)

I = Ideal([R(1)])
@test dimension(I) == -1
@test I.dim == -1
Expand Down
9 changes: 9 additions & 0 deletions test/algorithms/hilbert.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,15 @@
@test iszero(hilbert_dimension(I))
@test 4 == hilbert_degree(I)

I = Ideal([R(0)])
HS = 1//(1-t)^(nvars(R))
HP = (1//6*s^3 + s^2 + 11//6*s + 1, 0)

@test HS == hilbert_series(I)
@test HP == hilbert_polynomial(I)
@test nvars(R) == hilbert_dimension(I)
@test isone(hilbert_degree(I))

I = Ideal([R(1)])
@test iszero(hilbert_series(I))
@test all(iszero, hilbert_polynomial(I))
Expand Down
Loading