Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -23,18 +23,18 @@ jobs:
fail-fast: false
matrix:
julia-version:
- '1.6'
- '1.9'
- '~1.10.0-0'
- '~1.11.0-0'
- '1.10'
- '1.11'
- '1.12'
- '1.13-nightly'
- 'nightly'
julia-arch:
- x64
os:
- ubuntu-latest
include:
# Add a few macOS jobs (not too many, the number we can run in parallel is limited)
- julia-version: '1.6'
- julia-version: '1.10'
julia-arch: x64
os: macOS-latest
- julia-version: 'nightly'
Expand Down
6 changes: 3 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "AlgebraicSolving"
uuid = "66b61cbe-0446-4d5d-9090-1ff510639f9d"
authors = ["ederc <ederc@mathematik.uni-kl.de>", "Mohab Safey El Din <Mohab.Safey@lip6.fr", "Rafael Mohr <rafael.mohr@lip6.fr>", "Rémi Prebet <remi.prebet@ens-lyon.fr>"]
version = "0.10.1"
version = "0.10.2"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -28,5 +28,5 @@ Printf = "1.6"
Random = "1.6"
StaticArrays = "1"
Test = "1.6"
julia = "1.6"
msolve_jll = "0.900.200"
julia = "1.10"
msolve_jll = "0.900.300"
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
A julia package for algebraically solving multivariate polynomial systems.

## Installation
AlgebraicSolving requires Julia 1.6 or newer. In principle it can be installed and used
AlgebraicSolving requires Julia 1.10 or newer. In principle it can be installed and used
like any other Julia package:

```julia
Expand Down
40 changes: 40 additions & 0 deletions test/algorithms/groebner-bases.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,46 @@
-x*w + y*z
]
@test G == H

# issue 113
R, (u1,u2,u3,u4,u5,u6,u7,u8,u9,l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13,l14,l15,l16,l17,l18,x1,x2) = polynomial_ring(QQ, [:u1, :u2, :u3, :u4, :u5, :u6, :u7, :u8, :u9, :l1, :l2, :l3, :l4, :l5, :l6, :l7, :l8, :l9, :l10, :l11, :l12, :l13, :l14, :l15, :l16, :l17, :l18, :x1, :x2])
I = Ideal([
-95 * u1 * x1 + 53 * u4 * x1 + 63 * u1 * x2 + 89 * u4 * x2 + u1,
-95 * u2 * x1 + 53 * u5 * x1 + 63 * u2 * x2 + 89 * u5 * x2 + u2,
-95 * u3 * x1 + 53 * u6 * x1 + 63 * u3 * x2 + 89 * u6 * x2 + u3,
53 * u1 * x1 + 95 * u4 * x1 + 89 * u1 * x2 - 63 * u4 * x2 + u4,
53 * u2 * x1 + 95 * u5 * x1 + 89 * u2 * x2 - 63 * u5 * x2 + u5,
53 * u3 * x1 + 95 * u6 * x1 + 89 * u3 * x2 - 63 * u6 * x2 + u6,
-95 * u7 * x1 + 63 * u7 * x2,
-95 * u8 * x1 + 63 * u8 * x2,
-95 * u9 * x1 + 63 * u9 * x2,
-23 * u1 + 9 * u4 + 79 * u7 + 33,
-23 * u2 + 9 * u5 + 79 * u8 - 22,
-23 * u3 + 9 * u6 + 79 * u9 - 19,
21 * u1 - 80 * u4 - 76 * u7 + 57,
21 * u2 - 80 * u5 - 76 * u8 + 97,
21 * u3 - 80 * u6 - 76 * u9 + 78,
46 * u1 - 50 * u4 + 28 * u7 - 7,
46 * u2 - 50 * u5 + 28 * u8 - 32,
46 * u3 - 50 * u6 + 28 * u9 + 29,
-95 * u1 * l1 + 53 * u4 * l1 - 95 * u2 * l2 + 53 * u5 * l2 - 95 * u3 * l3 + 53 * u6 * l3 + 53 * u1 * l4 + 95 * u4 * l4 + 53 * u2 * l5 + 95 * u5 * l5 + 53 * u3 * l6 + 95 * u6 * l6 - 95 * u7 * l7 - 95 * u8 * l8 - 95 * u9 * l9 - 1,
63 * u1 * l1 + 89 * u4 * l1 + 63 * u2 * l2 + 89 * u5 * l2 + 63 * u3 * l3 + 89 * u6 * l3 + 89 * u1 * l4 - 63 * u4 * l4 + 89 * u2 * l5 - 63 * u5 * l5 + 89 * u3 * l6 - 63 * u6 * l6 + 63 * u7 * l7 + 63 * u8 * l8 + 63 * u9 * l9,
-95 * l1 * x1 + 53 * l4 * x1 + 63 * l1 * x2 + 89 * l4 * x2 + l1 - 23 * l10 + 21 * l13 + 46 * l16,
-95 * l2 * x1 + 53 * l5 * x1 + 63 * l2 * x2 + 89 * l5 * x2 + l2 - 23 * l11 + 21 * l14 + 46 * l17,
-95 * l3 * x1 + 53 * l6 * x1 + 63 * l3 * x2 + 89 * l6 * x2 + l3 - 23 * l12 + 21 * l15 + 46 * l18,
53 * l1 * x1 + 95 * l4 * x1 + 89 * l1 * x2 - 63 * l4 * x2 + l4 + 9 * l10 - 80 * l13 - 50 * l16,
53 * l2 * x1 + 95 * l5 * x1 + 89 * l2 * x2 - 63 * l5 * x2 + l5 + 9 * l11 - 80 * l14 - 50 * l17,
53 * l3 * x1 + 95 * l6 * x1 + 89 * l3 * x2 - 63 * l6 * x2 + l6 + 9 * l12 - 80 * l15 - 50 * l18,
-95 * l7 * x1 + 63 * l7 * x2 + 79 * l10 - 76 * l13 + 28 * l16,
-95 * l8 * x1 + 63 * l8 * x2 + 79 * l11 - 76 * l14 + 28 * l17,
-95 * l9 * x1 + 63 * l9 * x2 + 79 * l12 - 76 * l15 + 28 * l18
])
G = groebner_basis(I, eliminate=27)
H = MPolyRingElem[
R(1)
]
@test G == H

end

@testset "Algorithms -> Sig Gröbner bases" begin
Expand Down
Loading