Skip to content

anam-org/metaxy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

732 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Metaxy Logo

Metaxy

PyPI version Python versions PyPI downloads CI codecov Ruff Ty prek

Metaxy is a metadata layer for multimodal Data and ML pipelines. Metaxy tracks lineage and versioning across complex computational graphs for multimodal datasets. Metaxy can cache every single sample and scale to handle millions of them.

Metaxy manages metadata while data typically lives elsewhere:

┌─────────────────────────────────┐          ┌─────────────────────────┐
│      Metadata (Metaxy)          │          │   Data (e.g., S3)       │
├──────┬──────────┬──────┬────────┤          │                         │
│  ID  │   path   │ size │version │          │  📦 s3://my-bucket/     │
├──────┼──────────┼──────┼────────┤          │                         │
│ img1 │ s3://... │ 2.1M │a3fdsf  │ ────────>│    ├─ img1.jpg          │
│ img2 │ s3://... │ 1.8M │b7e123  │ ────────>│    ├─ img2.jpg          │
└──────┴──────────┴──────┴────────┘          └─────────────────────────┘

The feature that makes Metaxy stand out is the ability to track partial data dependencies and detect prunable updates — updates that don't trigger change propagation through certain paths in the dependency graph because they modify fields that aren't dependencies of those downstream features. For example, updating audio upstream of a face recognition step allows pruning the face recognition branch since it only depends on video frames. This problem is specific to multimodal pipelines and doesn't typically emerge in traditional data engineering.

Metaxy's goal is to provide a standard instrument for any kind of multimodal (or purely tabular) incremental pipelines, standardizing dependency specification, versioning, partial data dependencies, and manipulations over metadata. Or, in short, to be a universal glue for incremental data pipelines.

Metaxy is very reliable and is fanatically tested across all supported Python versions and platforms 1.

Documentation

Read the docs to learn more.

Installation

Install Metaxy from PyPI:

uv add metaxy

Using Metaxy

Metaxy is highly pluggable and generally can be used with any kind of incremental pipelines, storage, metadata storage, and dataframe libraries.

Metaxy provides integrations with popular tools such as Dagster, Ray, ClickHouse, DeltaLake, SQLModel.

The full list can be found here.

Contributing

See CONTRIBUTING.md.

Footnotes

  1. The CLI is not tested on Windows yet.

About

Pluggable sample-level metadata versioning for incremental multimodal pipelines.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Languages